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Introduction
Genetic toxicology is the study of the interactions between chemical agents and the 
genetic material of organisms, focusing on mutations, chromosomal aberrations, DNA 
damage, and the associated mechanisms [1]. It aims to assess the genetic harm caused 
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Abstract
Genetic toxicology is crucial for evaluating the potential risks of chemicals and 
drugs to human health and the environment. The emergence of high-throughput 
technologies has transformed this field, providing more efficient, cost-effective, and 
ethically sound methods for genotoxicity testing. It utilizes advanced screening 
techniques, including automated in vitro assays and computational models to 
rapidly assess the genotoxic potential of thousands of compounds simultaneously. 
This review explores the transformation of traditional in vitro and in vivo methods 
into computational models for genotoxicity assessment. By leveraging advances 
in machine learning, artificial intelligence, and high-throughput screening, 
computational approaches are increasingly replacing conventional methods. 
Coupling conventional screening with artificial intelligence (AI) and machine learning 
(ML) models has significantly enhanced their predictive capabilities, enabling the 
identification of genotoxicity signatures tied to molecular structures and biological 
pathways. Regulatory agencies increasingly support such methodologies as humane 
alternatives to traditional animal models, provided they are validated and exhibit 
strong predictive power. Standardization efforts, including the establishment 
of common endpoints across testing approaches, are pivotal for enhancing 
comparability and fostering consensus in toxicological assessments. Initiatives like 
ToxCast exemplify the successful incorporation of HTS data into regulatory decision-
making, demonstrating that well-interpreted in vitro results can align with in vivo 
outcomes. Innovations in testing methodologies, global data sharing, and real-time 
monitoring continue to refine the precision and personalization of risk assessments, 
promising a transformative impact on safety evaluations and regulatory frameworks.
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by chemicals that may induce acute or chronic toxicity. While foundational studies in 
the mid-20th century established key links between mutagenicity and carcinogenicity 
through assays like the Ames test, modern genetic toxicology has evolved significantly in 
response to increasing demands for rapid, accurate, and ethical testing [2]. By the 1990s, 
it became evident that in vitro assays alone were insufficient to fully predict human car-
cinogenicity, prompting a shift toward integrated strategies combining in vitro, in vivo, 
and in silico approaches. This integration laid the groundwork for the adoption of high-
throughput screening (HTS), computational toxicology, and systems biology.

DNA damage plays a critical role in the onset and progression of various diseases, 
including cancer, neurodegenerative disorders, and developmental abnormalities. 
Understanding the mechanisms of genotoxicity is therefore essential for both disease 
prevention and therapeutic development. The growing recognition of these health impli-
cations coincided with new challenges in the field, particularly the vast number of sub-
stances requiring evaluation and the increasing complexity of biological systems. In the 
2000s, this led to a transformation in toxicological testing approaches, emphasizing the 
integration of emerging technologies such as genomics, computational modeling, and 
high-throughput screening to improve efficiency and relevance in risk assessment. A 
radical overhaul of toxicology testing strategies was attempted to better meet the health 
and safety challenges of the 21st century [3]. Among these tools, quantitative structure-
activity relationships (QSAR) gained prominence for predicting mutagenicity and carci-
nogenicity based on chemical structure (4). However, it was acknowledged that QSAR 
systems could not replace animal testing entirely due to its inability to fully replicate 
complex in vivo biological responses. The ongoing development of QSAR models and 
other predictive methods aimed to refine toxicological assessments, but their limitations 
underscored the need for continued research and improvements in testing protocols. 
The integration of quantitative dose-response analysis and risk assessment is gradually 
replacing qualitative hazard identification in applied genetic toxicology. Combining vari-
ous assays enhances the sensitivity and specificity of genotoxicity testing, helping to pre-
dict their carcinogenic potential [5]. Present-day genetic toxicology includes the HTS of 
changes incurred in genetic material, including hereditary influence of such changes that 
may impact future generations [6].

Hence, genetic toxicology has transitioned from traditional assays to a predictive, 
high-throughput, and computationally advanced field. The integration of artificial intel-
ligence (AI), big data, and multi-omics approaches enhances genetic risk assessment, 
reduces reliance on animal testing, and facilitates the development of safer pharmaceu-
ticals and chemicals. This transformation improves public health protection while pro-
moting ethical and efficient toxicological evaluations. AI and machine learning (ML) 
streamline genotoxicity testing by automating data interpretation and risk prediction, 
minimizing the need for conventional in vivo studies. AI-driven analysis of next-gen-
eration sequencing (NGS) and microarray data enables the detection of genetic dam-
age signatures, while automated image processing in comet and micronucleus assays 
enhances accuracy in identifying DNA damage e and chromosomal aberrations. Deep 
learning models improve sensitivity and specificity by recognizing subtle gene expres-
sion changes linked to toxicity.

Regulatory agencies, including the FDA, EPA, and OECD, leverage AI for automated 
risk assessments, prioritization of chemicals, and toxicity classification, expediting 
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decision-making in pharmacology and environmental safety. Additionally, natural lan-
guage processing (NLP) aids in extracting toxicological insights from scientific literature, 
refining data curation processes. Personalized toxicology is also advancing through AI-
driven analysis of genetic variability, enabling the prediction of individual susceptibil-
ity to genotoxic agents and supporting precision medicine initiatives. Big data plays a 
fundamental role in consolidating toxicological, genomic, and epidemiological informa-
tion, improving risk assessment frameworks, and fostering reproducibility in scientific 
research. Standardized data-sharing frameworks facilitate global collaboration among 
researchers and regulatory bodies, ensuring more reliable and comprehensive toxico-
logical evaluations. As methodologies continue to evolve, the field of genetic toxicology 
increasingly prioritizes alternative testing strategies, further reducing the ethical and 
scientific reliance on animal models.

The purpose of this review is to provide a comprehensive overview of the evolution 
and current state of genetic toxicology, with a specific focus on the significant advance-
ments enabled by HTS and data driven computational models. Such innovations have 
transformed the field by facilitating the rapid, cost-effective, and ethically responsible 
assessment of the genotoxic potential of chemicals and drugs. Furthermore, the review 
will examine the regulatory implications of these advancements.

Methodology
We conducted a comprehensive search for studies published between the 1990s and 
2023 in the following literature databases: PubMed, Google scholar and Scopus. To 
ensure comprehensive literature retrieval, use a mix of keywords and Boolean operators 
(AND, OR) relevant to genetic toxicology, high-throughput screening, and computa-
tional methods were used. The core keywords included ‘genetic toxicology’, ‘DNA dam-
age and diseases’, ‘In vitro techniques in genetic toxicology’, ‘In vivo techniques in genetic 
toxicity’, ‘DNA damage detection’, ‘high-throughput screening (HTS), ‘machine learning 
in toxicology, ‘artificial intelligence in toxicology’, ‘AI in toxicology’, ‘machine learning 
in toxicology’, ‘ML in toxicology’, ‘in silico toxicology’, ‘genotoxicity assessment’, ‘bioin-
formatics in toxicology’, ‘regulatory toxicology’, ‘computational toxicology’, ‘omics-based 
toxicology’, ‘toxicogenomics’, ‘predictive toxicology’, ‘data-driven toxicology’, ‘environ-
mental toxicology’, ‘big data in toxicology’, ‘toxicity prediction models’. In addition, we 
explored online sources for relevant conferences and organizations related to the topic 
of ‘Advances in genetic toxicology in the high throughput era’.

The inclusion criteria for literature selection comprised peer-reviewed studies apply-
ing AI, ML, or computational methods in genetic toxicology, research on high-through-
put screening for DNA damage detection, and articles integrating omics data for toxicity 
prediction. The search was specifically aimed at identifying studies that utilized ‘testing 
for genetic toxicology methodologies’. Additionally, studies discussing regulatory impli-
cations of computational toxicology and reviews/meta-analyses covering bioinformat-
ics and data mining approaches in toxicity assessment were included. Exclusion criteria 
included studies that did not incorporate AI, machine learning, or computational anal-
ysis, experimental studies without a bioinformatics component, duplicate articles, and 
publications in languages other than English.
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DNA damage and diseases
Genetic toxicology, which investigates the effects of chemical and physical agents on 
the genetic processes of living cells and hereditary material (DNA), plays a crucial role 
in understanding diseases associated with exposure to hazards. Exposure can induce 
genetic instability, leading to a range of disorders, including cancers [7], genetic disor-
ders, and epigenetically mediated transgenerational effects [8]. An important contribu-
tion of genetic toxicology has been in studying cancer. More than 90% of known human 
chemical carcinogens are genotoxic according to the International Agency for Research 
on Cancer (IARC) [9]. Exposure to environmental factors like UV radiation or aflatoxins 
can cause characteristic mutations in KRAS and TP53 genes, causing skin and lung can-
cer [10]. Hematopoietic cancers like acute myeloid leukemia (AML) and myelodysplas-
tic syndromes (MDS) [11] have also genotoxic roots. Genetic toxicology not only aids 
in discovering root cause of many diseases but has also facilitated the development of 
targeted therapies, improving cancer diagnosis and treatment by identifying the genetic 
alterations responsible for tumor formation [12]. Understanding mutations in genes 
like BRCA1/BRCA2 or TP53 has led to precision oncology approaches that personalize 
treatment for patients. Moreover, genetic toxicology research has advanced our under-
standing of epigenetic modifications, such as DNA methylation and histone acetylation, 
which play a critical role in tumor development and progression. Mutations in genes 
involved in DNA methylation (e.g., DNMT1, DNMT3A) are frequently observed in 
colorectal cancers. The interplay between genetic mutations and environmental factors, 
such as dietary components [13]. This information has paved the way for the develop-
ment of epigenetic therapies, including DNA methylation inhibitors, that target revers-
ible genetic changes contributing to cancer. Beyond cancer, it has been instrumental in 
studying benign tumors, noncancerous growths often caused by environmental chemi-
cals, genetics, or other factors. It has helped understand the genotoxic effects of chemi-
cals and informs strategies to mitigate their impact on human health.

Genetic toxicology also plays a crucial role in studying hereditary abnormalities. Dis-
orders such as cystic fibrosis, phenylketonuria, and Tay-Sachs disease are caused by gene 
mutations [14] and genetic toxicology investigates how chemical and physical agents 
influence DNA, potentially triggering genetic mutations linked to these conditions. 
Exposure to mutagenic agents can increase the risk of mutations that cause genetic dis-
orders [1], emphasizing the importance of genetic toxicology in prevention. The field 
also plays a vital role in developmental toxicity, where exposure to genotoxic agents dur-
ing critical stages of development can lead to congenital abnormalities and long-term 
health issues. Additionally, genetic toxicology has contributed to the study of epigenetic 
mechanisms, such as DNA methylation [15]. Epigenetic changes do not alter the DNA 
sequence itself but modify how genes are expressed, influencing cellular functions and 
overall health [16]. Research in genetic toxicology has shown that exposure to certain 
genotoxic agents can disrupt these epigenetic processes, leading to adverse health out-
comes. Exposure to environmental toxins, such as heavy metals or endocrine-disrupting 
chemicals, can alter DNA methylation patterns in ways that not only affect the exposed 
individual but may also impact their offspring and subsequent generations [17]. These 
transgenerational effects have been linked to a range of health conditions, including 
developmental disorders, metabolic diseases, and increased susceptibility to cancer. The 
insights gained from genetic toxicology have also informed the development of therapies 
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that target epigenetic mechanisms. Drugs such as DNA methylation inhibitors and his-
tone deacetylase inhibitors are now being used to treat cancers and other diseases where 
epigenetic dysregulation plays a key role [18].

Genetic toxicology has also been instrumental in identifying environmental toxins that 
damage DNA, leading to the development of regulations that limit exposure to these 
harmful substances and prevent adverse health effects. Hence, genetic toxicology pro-
vides invaluable tools for disease prevention, therapeutic development, and regulatory 
safety assessments, shaping how we approach the impact of environmental, occupa-
tional, and genetic factors on human health.

Techniques for assessment
In vitro and in vivo techniques in genetic toxicology testing

Genotoxicity assessment is a critical component of safety evaluations, aiming to prevent 
drugs and other substances from posing risks to human health. Both genotoxicity and 
mutagenicity tests play an essential role in industrial and regulatory health assessments. 
Since no single test can capture all relevant genotoxic endpoints, a combination of in 
vivo and in vitro testing methods is recommended to provide a comprehensive evalua-
tion. These tests offer early insights into the potential harmful effects of chemicals across 
various domains, including pharmaceuticals, cosmetics, agrochemicals, industrial com-
pounds, food additives, natural toxins, and nanomaterials. By identifying genotoxic 
risks at an early stage, they help mitigate harm, ensuring the safety of new compounds 
while safeguarding public health and the environment. Genetic toxicology tests are con-
ducted following strict regulatory guidelines set by organizations like OECD (Organi-
zation for Economic Co-operation and Development), ICH (International Council for 
Harmonisation), and EPA (Environmental Protection Agency). These guidelines ensure 
that the tests are reliable, reproducible, and adhere to Good Laboratory Practice (GLP) 
standards.

In vitro tests are conducted in controlled laboratory environments, often using iso-
lated cells or subcellular components. These methods are widely used for initial geno-
toxicity screening due to their cost-effectiveness, efficiency, and ethical advantage 
of avoiding animal use. Common in vitro assays include Ames test [19], chromosome 
aberration test [20], micronucleus [21] and comet assay. These are also known as short-
term tests (STTs) and have been in use for decades. In vivo tests are performed in living 
organisms, such as rodents, and are crucial for confirming genotoxic effects observed in 
vitro. They provide insights into how genotoxic agents behave in a complex biological 
system, accounting for absorption, metabolism, and repair processes. Figure 1 highlights 
some of the most commonly employed methods for assessing genotoxic chemicals [22].

The Ames assay, developed in 1975, is a rapid, sensitive, and cost-effective method 
for assessing the mutagenicity of substances. It uses histidine-auxotrophic Salmonella 
typhimurium strains, which require histidine from the environment to grow. Mutagenic 
substances can revert these strains to a prototrophic state, allowing growth on histidine-
free media. The assay detects a wide range of genotoxic carcinogens and mutation types, 
including frame shifts and base substitutions. However, its limited specificity and the 
challenge of interpreting positive results, along with the differences between microor-
ganisms and mammals in genetic complexity and DNA repair systems, pose limitations 
to its use in drug development.
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The comet assay and micronucleus assay (MNA) are two widely used genotoxicity 
detection techniques due to their simplicity, sensitivity, and ability to detect DNA strand 
breaks or chromosomal loss. Combining both assays has proven effective in elucidating 
the mechanisms of genotoxic compounds, as they each detect DNA damage at different 
levels. The comet assay, introduced in 1984, detects DNA strand breaks by visualizing 
comet tail-like structures formed by fragmented DNA migrating toward the anode dur-
ing electrophoresis. The alkaline comet assay, a more sensitive variant, detects a range of 
DNA damage, including double-strand breaks and alkali-labile sites, making it particu-
larly useful for identifying genotoxic agents. Its advantages include flexibility, sensitivity, 
low cell requirements, quick execution, and low cost.

Fig. 1 List of various genetic and epigenetic toxicology testing methods with specificity to type of DNA altera-
tion. MLA: Mouse lymphoma assay; HPRT: Hypoxanthine guanine phosphoribosyl transferase; TK: thymidine kinase 
gene mutation assay, TGR: Transgenic rodent mutation assay; Pig-A: phosphatidylinositol glycan class A (PIG-A) 
gene use for detecting somatic cell gene mutations; y-H2AX: phosphorylated form of histone H2AX serving as 
marker of double strand breaks; UDS: Unscheduled DNA Synthesis; TUNEL: Terminal deoxynucleotidyl transfer-
ase dUTP Nick-End Labeling; HCR: Host-cell reactivation; MN: micronucleus test; SCE: Sister Chromatid Exchange; 
CBMN: Cytokinesis-Block Micronucleus; FISH: Fluorescence In Situ Hybridization; ChIP: Chromatin Immunoprecipi-
tation Sequencing; miRNA: microRNA; Line-1: Long Interspersed Nuclear Element-1; ATAC: Assay for Transposase-
Accessible Chromatin
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The micronucleus assay, a well-established and reliable test, detects chromosomal 
damage by identifying micronuclei in the cytoplasm of erythrocytes. These micro-
nuclei, discovered over 100 years ago, indicate chromosomal loss or disruption. MNA 
can assess both clastogenic (chromosome-breaking) and aneugenic (affecting chromo-
some number) effects. The chromosomal aberration assay further evaluates structural 
abnormalities in chromosomes using mammalian cell lines, such as Chinese Hamster 
Ovary (CHO) cells, to identify agents that cause chromosomal damage. Additionally, 
sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays 
provide further resolution in detecting chromosomal alterations and cell cycle effects, 
while fluorescence in situ hybridization (FISH) enables the detection of specific chro-
mosomal abnormalities. Beyond chromosomal damage, gene mutation assays contrib-
ute to genotoxicity assessment by detecting mutations at the gene level. The Ames test 
identifies point mutations in bacteria, while the mouse lymphoma assay (MLA) and 
hypoxanthine-guanine phosphoribosyl transferase (HPRT) assay detect gene mutations 
in mammalian cells. The transgenic rodent (TGR) mutation assay evaluates mutations 
in vivo in both somatic and germline cells, and the Pig-a assay enables in vivo detection 
of mutations in blood cells. DNA damage and repair assays provide insight into geno-
toxic events and cellular responses. These include the γH2AX assay for detecting DNA 
double-strand breaks, TUNEL assay for apoptosis-induced fragmentation, and unsched-
uled DNA synthesis (UDS) assay for assessing DNA repair. Host-cell reactivation assays 
evaluate cellular repair capability, while the use of both alkaline and neutral comet assays 
distinguishes between single- and double-strand breaks.

Transgenic animal models have recently been constructed and proven to be powerful, 
organ-specific, short-term mutagenicity assays to examine the many processes involved 
in spontaneous or induced mutations [23, 24] (Fig. 2). They allow researchers to observe 
the effects of genotoxic agents in a controlled environment, focusing on organ-specific 
responses. Transgenic rodents, such as those carrying specific reporter genes (e.g., lacZ, 
gpt), provide sensitive assays for detecting mutations and chromosomal aberrations. 
These models can reveal subtle genetic changes that might not be detectable in tradi-
tional assays, enhancing the sensitivity of genotoxicity testing.

Furthermore, as next-generation sequencing technology has advanced rapidly, new 
methods in genetic toxicology have grown up to directly examine genetic materi-
als at the genome-wide level with single nucleotide precision [25]. Currently, multiple 
endpoint genetic tests like HepaRG are employed to assess genotoxicity. The platform 
incorporates various assays, including the Comet assay and micronucleus tests, to evalu-
ate DNA damage and chromosomal abnormalities. It also employs transcriptomics to 
understand the mode of action for genotoxic and nongenotoxic compounds. 3D mod-
els mimicking tissues are also state of the art in assessing chemical hazards and have 
shown improved relevance over traditional 2D cultures, as they provide more realistic 
cell-cell and cell-matrix interactions, enhancing the predictability of genotoxic effects. 
Unlike traditional 2D monolayer cultures, 3D models mimic tissue-like architecture, 
offering enhanced cell-cell and cell-matrix interactions. These models more accurately 
replicate physiological responses, improving the predictability of genotoxic effects by 
allowing better assessment of DNA damage, repair mechanisms, and chemical penetra-
tion gradients. Examples include spheroids, organoids, and 3D bioprinted tissues, which 
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are increasingly used for genotoxicity testing due to their improved relevance over con-
ventional 2D cultures.

In recent years, the integration of epigenetic endpoints has added a critical layer to 
genotoxicity testing. Various analytical approaches now enable the assessment of modi-
fications in DNA, histones, non-coding RNAs, and chromatin structure, providing 
insight into gene regulation changes induced by genotoxic agents. These tools contribute 
to a more holistic evaluation of cellular responses, complementing traditional assays and 
improving the precision of hazard identification and risk assessment.

High throughput techniques in testing

The advent of high-throughput technologies has brought about a paradigm shift in 
genetic toxicology, moving away from traditional methods like animal testing towards 
more cost-effective, ethical approaches such as in vitro and in silico testing. This transi-
tion has generated vast amounts of “big data,” enabling high-throughput screening and 
more efficient analysis. High throughput techniques utilize advanced tools and platforms 
to screen large numbers of compounds through comet, micronucleus and various other 
assays (γ-H2AX assay, bisulfite sequencing, transcriptomics, microarray analysis, imag-
ing etc.) to identify genotoxic properties, mutations and DNA damage. Traditional bac-
terial assays, such as the SOS Chromotest have been adapted to facilitate rapid screening 
of genotoxic agents (Table 1). NGS and microarrays enable comprehensive genome-wide 
mutation analysis and gene expression profiling, enhancing sensitivity and resolution 
in detecting DNA damage. Techniques such as flow cytometry and high-content imag-
ing provide quantitative, real-time assessments of genotoxic effects at the cellular level. 
Furthermore, mass spectrometry and omics-based approaches allow deeper molecular 

Fig. 2 Representation of in vitro and in vivo rodent genotoxicity assays for assessment of carcinogenicity
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insights into toxicological mechanisms by integrating genomic, transcriptomic, and pro-
teomic responses.

Micronucleus assays can be performed using automated imaging and flow cytometry 
systems, allowing for the analysis of thousands of cells in multi-well plates. A recent 
study has highlighted the use of an automated micronucleus assay in CHO-K1 cells, 
which demonstrated a predictivity of 91% with a sensitivity of 94% and specificity of 85% 
[43]. This high-throughput approach not only enhances the speed of genotoxicity test-
ing but also reduces variability associated with manual scoring methods. Researchers 
have also adapted comet assays to screen large libraries of compounds for their potential 
genotoxic effects, thus accelerating the identification of harmful substances [44]. Inno-
vations such as Quantitative High-Throughput Screening (qHTS) [45], transcriptomic 
biomarkers like TGx-DDI [46], and automated assays like CometChip® [47] are enhanc-
ing efficiency, accuracy, and relevance in toxicity assessments. qHTS tests compounds 
at multiple concentrations, generating concentration-response curves that provide 
detailed insights into the biological effects of chemicals. It has become popular for its 
ability to reduce false positives and negatives, thereby improving data reliability. The 
TGx-DDI biomarker is a transcriptomic tool designed to assess DNA damage-inducing 
agents in human cells. It has been integrated into a high-throughput testing framework 

Table 1 Key high-throughput technologies to assist the study of genetic toxicology
Technology Application Advantages Disadvantages Reference(s)
SOS 
Chromotest

Bacterial colorimetric assay 
indicating DNA damage 
or genotoxicity and easily 
adapted for HTS

Simplicity, high sen-
sitivity, faster results 
compared to Ames 
test

Limited applicability to 
certain types of geno-
toxic agents

[26]

Next-Genera-
tion Sequenc-
ing (NGS)

Genome-wide mutation 
analysis, DNA damage 
detection

High sensitivity, com-
prehensive coverage

Difficulty detecting low-
abundant somatic muta-
tions, high cost, complex 
data analysis

[27–29]

Microarrays Gene expression profiling, 
DNA damage response 
pathways

High throughput, 
multiplexed analysis

Limited to pre-defined 
gene sets

[30, 31]

Quantitative 
HTS

Screening compounds for 
genotoxicity and concen-
tration-response profiling

Rapid testing of 
thousands of com-
pounds, reduced 
false negatives, and 
cost-effectiveness

Requires robust informat-
ics for data analysis; 
variability in potency esti-
mates across profiles

[32]

Omics 
Technologies 
(Genomics, 
Transcrip-
tomics, 
Proteomics)

Comprehensive study of ge-
netic material and cellular 
responses

Enables holistic un-
derstanding of toxicity 
mechanisms; rapid 
genome sequencing

Complexity in data 
interpretation; requires 
integration across mul-
tiple datasets

[3]

Flow 
Cytometry

Cell cycle analysis, DNA 
damage detection

Rapid, quantitative 
analysis

Requires specific staining 
and instrumentation

[33–35]

Mass 
Spectrometry

Protein analysis, metabolite 
profiling, SNP genotyping, 
epigenotype analysis, and 
allele quantification

High sensitivity, 
specificity

Complex sample 
preparation, specialized 
instrumentation

[36, 37]

Imaging Cellular morphology, DNA 
damage visualization

Visual confirmation, 
high-content analysis

Requires image analysis 
software, potential for 
subjective interpretation

(38–40)

High-
throughput 
computation-
al models

Predictive modeling, data 
integration

Rapid analysis, iden-
tification of potential 
hazards

Model accuracy depends 
on data quality and 
model complexity

[41, 42]
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using the Nanostring nCounter system, allowing for efficient multiplexed screening [46]. 
The TGx-DDI Plexset assay enhances screening efficiency by eliminating steps such as 
concentration determination and RNA extraction, thus streamlining the process while 
maintaining specificity and sensitivity. The CometChip® assay enables high-throughput 
evaluation of DNA damage through a modified comet assay and TempO-Seq® that can 
process multiple samples simultaneously [48]. Combining the CometChip® assay with 
the TGx-DDI biomarker provides a highly accurate and efficient means of identifying 
DNA-damaging agents, demonstrating 100% accuracy in HepaRG™ cell cultures.

The γ-H2AX assay is specifically designed to detect DNA double-strand breaks, 
which are critical lesions associated with genomic instability and cancer [49]. This assay 
employs high-content imaging or flow cytometry with antibodies that specifically bind 
to phosphorylated H2AX, a marker indicative of double strand breaks. The automation 
of this assay has enabled researchers to conduct extensive screenings efficiently [50–52]. 
High-content imaging systems can also analyze DNA damage, cell cycle effects, and 
apoptosis, providing comprehensive data on cellular responses to various treatments 
[53]. ToxTracker system, a mouse stem cell-based reporter assay, and Litron Laborato-
ries’ MultiFlow multiplexed genotoxicity assessment method, leverage biomarkers and 
machine learning to classify genotoxic compounds. Hence, the integration of high-
throughput techniques into genetic toxicology testing is revolutionizing how researchers 
assess the genotoxic potential of chemicals.

Programs like ToxCast™ by the U.S. Environmental Protection Agency (EPA) utilize 
HTS to profile toxicity across a wide range of chemical classes, providing insights into 
potential genotoxicity and carcinogenicity. Recent developments in three-dimensional 
(3D) tissue models for genotoxicity testing have also been promising, as they offer more 
human-relevant alternatives to traditional two-dimensional (2D) cell cultures. These 
models, which include skin, liver, and airway tissues, allow for more accurate predictions 
of genotoxic effects, especially for substances applied via dermal or inhalation routes. 
The 3D skin models have been successfully adapted for micronucleus and comet assays, 
providing a valuable tool for dermally applied chemicals, including those in cosmetics.

Computational methods

Since Ashby and Tennant’s introduction of structural alerts for mutagenicity and car-
cinogenicity, computational systems have made significant strides in predicting geno-
toxicity endpoints [4]. These include mutations in cells of the organisms along with 
chromosome aberrations. Computational programs offer substantial benefits in quick 
screening and low resource requirements. They also help identify potentially geno-
toxic compounds early in the drug discovery process, assist in regulatory submissions, 
and reduce reliance on animal testing. Among them, QSAR models, expert rule-based 
systems, ML and deep learning (DL) models dominate the landscape. Techniques like 
multiple linear regression, partial least squares, and ML algorithms are used to build 
predictive models based on molecular descriptors [54, 55].

QSAR models analyze chemical descriptors (such as molecular weight, lipophilicity 
(logP), polar surface area (PSA), and various electronic properties (e.g., HOMO/LUMO 
energies)) ranked by their correlation with an observed endpoint, such as mutagenicity 
[56]. QSAR models can achieve external validation accuracies between 70% and 90%, 
depending on the dataset and specific model used [57]. Fisher et al. recently reviewed 
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that over 50% of tissue-specific QSAR approaches adhere to three OECD guidelines, yet 
only 5% meet al.l screening criteria [58]. The most frequently unmet criterion was the 
mechanistic interpretation of the model, corresponding to OECD criterion five. Popular 
QSAR platforms include Toxtree, VEGA, OECD QSAR toolbox [59]. Among emerging 
tools, RASAR stands out by combining read-across (unsupervised) with QSAR (super-
vised) techniques, enabling the rapid computation of similarity-based descriptors for 
q-RASAR model development [60]. The MolCompass framework, adhering to the low-
code/no-code (LCNC) paradigm, leverages a pre-trained parametric t-SNE model for 
visualizing chemical space and assessing QSAR/QSPR models [61]. Another notewor-
thy platform, QSARtuna, integrates modern machine learning techniques with model 
uncertainty quantification, enhancing the reliability of molecule property prediction 
[62]. A recent addition is the Easy-MODA tool, which addresses the challenges of docu-
menting complex simulation workflows, streamlining compliance with FAIR principles 
and improving the usability of MODA guidelines in materials modeling and nanotoxicity 
evaluation [63]. Coupling of deep learning with QSAR has been able to achieve AUC-
ROC scores above 0.90, indicating high predictive performance for genotoxicity [64].

Expert systems, developed by human experts, use cause-and-effect relationships 
between structural moieties and mutagenic activity, providing specific mechanisms 
for testing and validation [65]. These systems facilitate the integration of new rules as 
knowledge evolves. Hybrid systems combine the strengths of both rule based expert 
systems and QSAR approaches, leveraging fragment-based descriptors and statistical 
methods alongside expert rule systems to refine predictive capabilities. Examples of such 
systems are DEREK Nexus and HazardExpert, which offer rules and templates for pre-
dicting genotoxicity based on chemical structures [66].

AI-driven models can uncover mechanistic pathways such as oxidative stress and 
chromosomal aberrations linked to chemical exposure by analyzing multi-omics data. 
ML and DL methods have recently become powerful tools for predicting genotoxicity. 
These approaches go beyond traditional QSAR by leveraging large datasets and learn-
ing from complex patterns in molecular structures. Supervised learning algorithms like 
support vector machines (SVM), random forest (RF), and k-nearest neighbor (KNN) 
can be used to classify chemicals as genotoxic or non-genotoxic based on their molecu-
lar features [67]. Yang et al. have reported accuracies of 80.5% and 83.4% for SVM and 
RF based genotoxicity prediction [68]. Models such as Pubchem_SVM and MACCS_
RF have shown particularly reliable predictive abilities, making them useful for initial 
screenings of potential genotoxic compounds [67]. AI models also facilitate biomarker 
discovery by identifying gene expression changes and DNA methylation patterns associ-
ated with clastogen exposure, enabling early detection of carcinogenic potential. These 
biomarkers are validated using large-scale omics datasets from exposed populations, 
improving the precision of toxicity assessments. ML models, such as multi-task deep 
neural networks (MTDNNs), simultaneously analyze in vitro, in vivo, and clinical tox-
icity data, achieving superior predictive performance compared to single-task models. 
For example, MTDNNs utilizing SMILES embeddings improved clinical toxicity predic-
tion AUC-ROC scores by 10–15% over traditional methods. Morgan fingerprints also 
enhance AI models to analyze chemical structures. Hybrid models incorporating physi-
cochemical descriptors with bidirectional gated recurrent unit (BiGRU) neural networks 
have outperformed earlier approaches like DeepTox, achieving an average AUC-ROC 
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of 0.95 across 12 Tox21 endpoints. In addition, deep learning architectures, including 
random forests and support vector machines (SVMs), remain effective for quantitative 
QSAR modeling, but MTDNNs excel in handling high-dimensional multi-omics data. 
Transfer learning further improves toxicity predictions by adapting models trained on 
in vivo or in vitro data to predict clinical outcomes, thereby reducing reliance on costly 
human trials. Enhancing explainability, the Contrastive Explanations Method (CEM) 
identifies toxicity-inducing molecular substructures, improving model transparency. 
Recent advances in AI and ML have moved beyond binary toxicity classifications to 
predict the intensity of chemical effects through dose-response modeling. Integrating 
transcriptomic data with chemical descriptors further enhances prediction accuracy, 
particularly in hepatotoxicity and carcinogenicity studies.

Chemical exposure can lead to changes in gene expression and by analyzing tran-
scriptomic data using computational methods as edgeR [69], potential biomarkers for 
genotoxicity can be identified [70]. Tools like Ingenuity Pathway Analysis (IPA) [71] 
and Reactome [72] can help understand the biological pathways that might be dis-
rupted by a genotoxic substance. The adverse outome pathway (AOP) framework rep-
resents a systematic way to predict how molecular-level events lead to adverse health 
outcomes, including genotoxicity [73, 74]. Computational approaches using large data-
sets like Open TG-GATEs and DrugMatrix help generate hypotheses for AOP curation 
[75]. Information from computational models can prioritize laboratory testing based 
on anticipated risks, expanding chemical space and enabling hypothesis-driven SAR 
evaluations.

Automation and robotics have revolutionized genetic toxicology by enabling high-
throughput screening of vast chemical libraries [44]. The integration of robotic systems, 
detectors, and software to manage the entire process allows for rapid analysis of chemi-
cal compounds, including the assessment of their affinity to biological structures, which 
is often linked to toxicity. Brinkmann and Eisentraeger have successfully automated the 
umu-test, a genotoxicity assay performed according to ISO 13,829 standards, using the 
RoboSeq® 4204 SE robotic platform [76]. Tools such as the Tox21 robotic screening sys-
tem [77] are fully automated. It can test10,000 compounds in triplicate within a week. 
This effort aims to rapidly establish chemical signatures capable of predicting rapid in 
vivo toxicity in both humans and rodents.

Implications of high throughput assessment for regulatory frameworks
Regulatory agencies require comprehensive genotoxicity data as part of the approval 
process for new chemicals [78]. Regulatory testing for genetic damage has traditionally 
focused on identifying mutations and chromosomal damage, typically to assess carcino-
genic risk. However, a shift toward quantitative risk assessment is occurring, emphasiz-
ing a broader understanding of genomic damage and its connection to various adverse 
health outcomes. The proposed next-generation testing strategy incorporates flexible, 
comprehensive approaches to measure genomic damage, allowing for a more nuanced 
risk evaluation that links genetic effects to human health risks, in line with modern risk 
assessment frameworks like RISK21 [79].

Defining contexts for toxicogenomic predictive models and validating their biologi-
cal plausibility, reliability, and statistical performance are vital for regulatory adoption 
[80]. HTS has now become an integral part of modern toxicological assessments [81], 
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with regulatory agencies such as the U.S. Environmental Protection Agency (EPA) and 
the European Chemicals Agency (ECHA) incorporating these methods into their risk 
assessment frameworks [82].

Regulatory frameworks emphasize the importance of data quality to ensure robust-
ness and reproducibility, integration of HTS data with traditional toxicological findings 
for comprehensive evaluations. Historically, discrepancies between in vitro and in vivo 
results posed challenges for regulatory agencies, prompting the adoption of a weight-
of-evidence (WoE) approach [83]. This approach incorporates multiple data sources, 
including historical data and advanced methodologies such as Integrated Approaches to 
Testing and Assessment (IATA) and In Vitro to In Vivo Extrapolation (IVIVE), to bridge 
the gap between laboratory findings and real-world human health outcomes.

Regulatory frameworks have also evolved to integrate computational methods into 
genotoxicity assessments [84–86]. Key guidelines from organizations such as the Organ-
isation for Economic Co-operation and Development (OECD), International Council for 
Harmonisation (ICH), and U.S. FDA provide a structured approach for this integration. 
OECD has established five validation principles for QSAR model integration, including 
defined endpoints, unambiguous algorithms, and mechanistic interpretation [87]. The 
ICH M7 guideline recognizes QSAR models as valid tools for predicting mutagenicity, 
requiring rule-based and statistical QSAR methodologies for evaluating genotoxic risks 
associated with pharmaceutical impurities [88, 89]. The European Union REACH regu-
lation encourages the use of QSAR models to predict genotoxicity and reduce reliance 
on animal testing [90–92]. Similarly, the FDA supports computational methods in initial 
risk assessments as part of a tiered approach, emphasizing their utility in early screen-
ings [88, 93].

The integration of new approach methodologies into regulatory frameworks is driven 
by the need to reduce animal testing and enhance mechanistic understanding of geno-
toxicity. High-throughput assays are revolutionizing chemical safety evaluations by 
providing more efficient, ethical, and data-rich alternatives, thereby expediting the 
chemical approval process while enhancing the quality of data and mechanistic insights 
into genotoxic effects. Despite their potential, challenges remain in the validation, stan-
dardization, and regulatory acceptance of new approach methodologies within estab-
lished frameworks, requiring ongoing innovation to fully leverage these technologies for 
improved genotoxicity assessments and better protection of public and environmental 
health.

Limitations

Genetic toxicology methods face significant limitations that impact their reliability and 
regulatory applications. Traditional in vitro assays, such as the Ames test and micro-
nucleus test, often produce misleading results due to excessive dosing or the lack of 
human-like metabolic pathways in rodent-derived cells. These models fail to replicate 
the complexity of human metabolism and tissue interactions, making it difficult to assess 
organ-specific effects or chronic low-dose exposures. Moreover, in vitro systems are pri-
marily designed to detect DNA damage but do not effectively capture non-DNA-reac-
tive genotoxic mechanisms, such as aneugenic effects or epigenetic modifications.

Similarly, in vivo genetic toxicology methods, including transgenic rodent assays, 
are constrained by ethical concerns, high costs, and limited sensitivity to cumulative 
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or low-dose genotoxicity. These assays prioritize acute toxicity over chronic exposure 
effects, which may lead to an underestimation of long-term genotoxic risk. Addition-
ally, in vivo studies often fail to assess the combined effects of chemical mixtures, posing 
challenges for regulatory risk assessment. Carcinogenicity studies, which play a cru-
cial role in regulatory decision-making, are often unavailable for non-pharmaceutical 
chemicals, leading to reliance on conservative assumptions such as the Threshold of 
Toxicological Concern (TTC) approach. Furthermore, in vivo assays struggle to differen-
tiate between DNA-reactive and non-DNA-reactive genotoxicants, complicating hazard 
characterization.

A major limitation across both in vitro and in vivo methods is the challenge of extrap-
olating dose-response relationships to real-world exposure scenarios. Non-linear effects, 
such as threshold mechanisms observed in aneugens, complicate accurate predictions of 
genotoxicity. Additionally, neither approach adequately predicts the toxicity of chemi-
cal mixtures, failing to account for synergistic or antagonistic interactions between com-
pounds. Regulatory fragmentation further impedes progress, as guidelines such as those 
from the OECD and ICH prioritize standardized endpoints but lack harmonization for 
emerging techniques, including 3D tissue models and AI-driven mode-of-action (MoA) 
analysis.

HTS methods, while valuable for rapid hazard identification, also face several chal-
lenges. HTS assays, such as the comet and micronucleus tests, often suffer from assay 
interference due to nanomaterials or chemical properties like fluorescence and aggrega-
tion, leading to false positives or negatives. Additionally, many HTS platforms rely on 
simplified cell-free systems, limiting their ability to detect metabolic complexity and 
organ-specific effects. Data variability remains a challenge in HTS, with results differ-
ing across platforms, necessitating orthogonal validation to ensure reliability. Standard 
HTS assays often exclude cytotoxic concentrations to avoid confounding effects, which 
may lead to the underestimation of low-dose genotoxicity signals. Furthermore, HTS 
models frequently lack considerations for pharmacokinetic (PK) and metabolic proper-
ties, reducing their predictive power for in vivo toxicity. Integrating ADMET (absorp-
tion, distribution, metabolism, excretion, and toxicity) parameters into HTS workflows 
remains an ongoing challenge.

Computational models in genetic toxicology also present limitations due to data qual-
ity issues, biological complexity, and challenges in modeling dose-response relation-
ships. While QSAR and SAR models enhance chemical toxicity predictions, they often 
generate false positives and negatives due to incomplete mechanistic understanding. 
Tools such as Derek for Windows and MC4PC have limited predictive capabilities for 
noncovalent DNA interactions, which are significant contributors to genotoxicity but 
are underrepresented in current modeling approaches. Although regulatory agencies 
have adopted computational tools such as QSAR Toolbox and OPERA, standardiza-
tion of computational toxicology protocols remains incomplete. Many models classify 
compounds as genotoxic or non-genotoxic without quantifying dose-dependent effects, 
which limits their applicability in risk assessment.

Despite advancements in AI-driven genetic toxicology, challenges persist. Data incon-
sistencies across toxicity databases necessitate rigorous benchmarking, and model per-
formance varies depending on endpoints. For example, decision trees perform well for 
Tox21 targets, while multi-task deep neural networks (MTDNNs) are more suited for 
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clinical toxicity prediction. However, current models frequently prioritize binary classi-
fication over dose-response modeling, requiring the development of probabilistic frame-
works to predict toxicity intensity more accurately. Regulatory adoption of AI/ML-based 
predictions is further hindered by the lack of standardized validation protocols.

To address these challenges, integrating multi-omics data, refining in vitro mod-
els with human-derived cells, and combining computational models with mechanistic 
toxicology insights are essential. Ongoing efforts aim to improve data quality, enhance 
model interpretability, and integrate high-throughput screening assays to train AI mod-
els effectively. These advancements will enable safer chemical prioritization, reduce 
reliance on animal testing, and accelerate regulatory decision-making in genetic toxicol-
ogy. Standardization efforts and collaborative approaches between researchers, regula-
tory agencies, and industry stakeholders remain crucial for improving the accuracy and 
applicability of genetic toxicology assessments.

Future perspectives
The future of genetic toxicology testing is marked by significant advancements in tech-
nology, regulatory frameworks, and research methodologies, driven by the need for 
more efficient, accurate, and ethical approaches to assessing genotoxic risks. According 
to a report by the SkyQuest Technology, the global genetic toxicology testing market is 
projected to grow substantially, with a compound annual growth rate (CAGR) of > 10% 
through 2030 [94].

High-throughput genetic toxicology is undergoing transformative advancements, 
driven by innovations in technology, methodologies, and a commitment to ethical and 
human-relevant testing. AI and machine learning ML are revolutionizing data analy-
sis, enabling the efficient processing of large datasets to identify patterns and predict 
genotoxicity with unprecedented accuracy. These tools enhance the precision of tox-
icity predictions by leveraging molecular structures and biological pathways, reduc-
ing the reliance on extensive in vitro and in vivo testing. The adoption of multi-omics 
technologies, including genomics, proteomics, metabolomics, and transcriptomics, pro-
vides a comprehensive understanding of chemical impacts on cellular systems, enabling 
the discovery of early biomarkers and improving the robustness of predictive models. 
Human-based testing models, such as 3D cell cultures, organ-on-a-chip systems, and 
human-induced pluripotent stem cells (iPSCs), are replacing traditional methods by 
offering more accurate depictions of human biology and facilitating the identification 
of tissue-specific genotoxic effects. The field also benefits from the creation of global 
toxicology databases that aggregate diverse data sources, enhance reproducibility, and 
establish standardized protocols, while collaborative initiatives like Tox21 and ECVAM 
exemplify the power of shared resources in advancing alternative testing methods. Fur-
thermore, genetic toxicology is becoming more personalized by incorporating genetic 
data to identify susceptibility to genotoxic effects, enabling tailored safety evaluations 
for at-risk groups. Systems biology approaches are gaining traction as they integrate data 
from multiple sources to map toxicity pathways comprehensively. This holistic perspec-
tive helps elucidate how chemicals interact with cellular response networks and cause 
genotoxic effects. By combining systems biology with computational modeling, research-
ers can better predict long-term health outcomes associated with genotoxic exposures. 
Three-dimensional tissue models and organoids represent a significant advancement 
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in replicating human-like physiological conditions in vitro. These models improve the 
relevance of genotoxicity testing by mimicking tissue-specific responses and metabolic 
processes more accurately than traditional 2D cultures. The rise of personalized medi-
cine is shaping the future of genetic toxicology by emphasizing precision healthcare tai-
lored to individual genetic profiles. This shift requires more nuanced testing approaches 
that account for inter-individual variability in genetic susceptibility to genotoxic agents. 
Advances in toxicogenomics are expected to play a critical role in identifying biomarkers 
for personalized risk assessment.

Computational approaches, such as QSAR models, continue to evolve, streamlining 
the screening process and integrating with experimental data for cost-effective assess-
ments. With increasing regulatory acceptance of in vitro and in silico methods, the shift 
away from animal testing aligns with ethical concerns while meeting safety standards. 
The exploration of environmental and epigenetic factors, coupled with comprehensive 
risk assessment models, is broadening the scope of genetic toxicology to include long-
term health impacts and transgenerational effects. Emerging innovations, such as real-
time monitoring through sensor technologies, promise to enhance risk management in 
occupational and environmental settings. Together, these advancements, supported by 
global data-sharing efforts and harmonized regulatory practices, position high-through-
put genetic toxicology to meet modern scientific and societal challenges with efficiency, 
precision, and ethical rigor.

Conclusion
The field of genetic toxicology is essential for understanding the interactions between 
chemical agents and DNA, focusing on identifying and analyzing genetic damage 
caused by various substances. It has evolved from traditional methods to advanced 
high-throughput technologies, leading to improvements in chemical risk inference and 
associated disease understanding. The field is crucial for predicting long-term effects, 
assessing drug hazards, and designing strategies for hazard prevention. Non-animal test-
ing approaches and HTS, are vital for maximizing the potential of genetic toxicology. 
The integration of robotics, ML and computational approaches allow HTS for chemi-
cal safety and genotoxicity assessment. Together, these technological advancements are 
shifting the focus of genetic toxicology toward more cost-effective, predictive, and effi-
cient assessments. As regulatory bodies increasingly incorporate these innovations into 
chemical safety evaluations, the potential for reducing animal testing while improving 
the accuracy of risk assessments becomes more achievable, marking a significant step 
forward in both regulatory science and public health protection.
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