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Abstract
Background Functional deterioration (FD) of various organ systems is the major cause 
of death in ICU patients, but few studies propose effective multi-task (MT) model to 
predict FD of multiple organs simultaneously. This study propose a MT deep learning 
model named inter-organ correlation based multi-task model (IOC-MT), to dynamically 
predict FD in six organ systems.

Methods Three public ICU databases were used for model training and validation. The 
IOC-MT was designed based on the routine MT deep learning framework, but it used 
a Graph Attention Networks (GAT) module to capture inter-organ correlation and an 
adaptive adjustment mechanism (AAM) to adjust prediction. We compared the IOC-MT 
to five single-task (ST) baseline models, including three deep models (LSTM-ST, GRU-ST, 
Transformer-ST) and two machine learning models (GRU-ST, RF-ST), and performed 
ablation study to assess the contribution of important components in IOC-MT. Model 
discrimination was evaluated by AUROC and AUPRC, and model calibration was 
assessed by the calibration curve. The attention weight and adjustment coefficient 
were analyzed at both overall and individual level to show the AAM of IOC-MT.

Results The IOC-MT had comparable discrimination and calibration to LSTM-ST, 
GRU-ST and Transformer-ST for most organs under different gap windows in the 
internal and external validation, and obviously outperformed GRU-ST, RF-ST. The 
ablation study showed that the GAT, AAM and missing indicator could improve the 
overall performance of the model. Furthermore, the inter-organ correlation and 
prediction adjustment of IOC-MT were intuitive and comprehensible, and also had 
biological plausibility.

Conclusions The IOC-MT is a promising MT model for dynamically predicting FD in six 
organ systems. It can capture inter-organ correlation and adjust the prediction for one 
organ based on aggregated information from the other organs.

Keywords Organ dysfunction, Multi-task learning, Deep learning, Gated recurrent unit, 
Graph attention networks, Multivariate time series
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Introduction
Organ dysfunction is commonly seen in critically ill patients and is the major cause 
of death in ICU [1, 2]. Patients may already have organ dysfunction at admission and 
then suffer a further functional deterioration (FD), or develop organ dysfunction during 
ICU stay. Furthermore, in most cases patients suffer FD in more than one organ system, 
which is well known as the multiple organ dysfunction syndrome (MODS) [3]. Due to 
the high mortality and the increased burden of health-care resource brought by FD [4, 
5], early prediction of FD to initiate intervention is of important clinical significance.

In recent years, machine learning and/or deep learning models are increasingly 
adopted to predict FD and achieve the state-of-the-art predictive performance. Many 
previous studies developed their models for one single organ system, such as predict-
ing the risk of acute kidney injury (AKI) [6], circulatory failure [7] or respiratory failure 
[8]. Some other studies aimed to predict MODS [9, 10], but without analyzing which 
organ system contributed to the MODS. Besides, there are also some studies focused 
on predicting multiple complications including FD in one or more organ systems [11, 
12], but they trained separate models for predicting each complication respectively. All 
these studies essentially belong to single-task (ST) learning paradigm and their models 
are unable to serve as multi-organ warning system.

Multi-task (MT) learning aims to develop one model for handling multiple tasks 
simultaneously. Deep learning has become the priority scheme for MT due to its excel-
lent ability of feature extraction [13]. The most universal MT deep learning framework is 
composed of a shared neural-network encoder and multiple task-specific output heads. 
The shared encoder extracts shared feature (high-dimensional vector) for all tasks, 
and then the output heads, which are generally composed of several linear layers, take 
in the shared feature to produce output for corresponding tasks respectively [13, 14]. 
Several previous studies proposed their models for multiple clinical tasks based on this 
MT framework but using different shared encoders. Harutyunyan H et al. [15] adopted 
long short-term memory (LSTM) network as the shared encoder to simultaneously pre-
dict hospital mortality, disease decompensation (real-time mortality), length of stay and 
disease phenotype. Cherifa M et al. [16] used gated recurrent unit (GRU) encoder to 
dynamically predict mean arterial pressure (MAP) and heart rate (HR). Roy S et al. [17] 
proposed a modified recurrent neural network (RNN) encoder called sequential subnet-
work routing (SeqSNR) which can learn to use different subnetworks of the whole net-
work for predicting dysfunction of different organs. These MT frameworks have simple 
architecture and greatly save computing resource compared to using multiple ST mod-
els, but a notable limitation is that their separate output heads are unable to model the 
potential correlation between different tasks. This disadvantage may lead to sub-optimal 
results since different organic systems in human body are closely connected and FD in 
one organ can affect another [18–20].

In this study, we propose an improved MT deep learning framework, named inter-
organ correlation based multi-task model (IOC-MT) for hourly dynamic prediction of 
the FD risk for six organ systems. The IOC-MT uses a Graph Attention Networks [21] 
(GAT) module to capture inter-organ correlation, and an adaptive adjustment mecha-
nism (AAM) to adjust its prediction for an organ based on aggregated information from 
the other organs. Our experiment shows that the IOC-MT has comparable performance 
to the ST deep models, and better performance than the routine MT framework. In 
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addition, we use the attention weight to show the inter-organ correlation and the adjust-
ment coefficient to show the influence of inter-organ information aggregation on model 
output.

Method
Data source, participants and data extraction

We implemented a retrospective study on multivariate time series (MTS) data of patients 
from three public ICU databases: the Medical Information Mart for Intensive Care III 
(MIMIC-III) [22], MIMIC-IV [23] and eICU Collaborative Research Database (eICU-
CRD) [24]. The MIMIC-III recorded patients admitted to ICUs of the Beth Israel Dea-
coness Medical Center between 2001 and 2012, while the MIMIC-IV recorded patients 
in this hospital between 2008 and 2019. The eICU-CRD recorded patients admitted to 
335 ICUs of 208 hospitals located throughout the US during 2014 to 2015. A local ethi-
cal review board (ERB) approval was achieved for building these databases, thus a ERB 
approval from our institution was exempted.

We selected participants from the three databases according to the following inclu-
sion criteria: (1) aged between 16 and 89 years old; (2) the first ICU stay of a patient; (3) 
length of ICU stay not less than 48 h; (4) the admission time is between 2014 and 2019 
(for MIMIC-IV). As the MIMIC-IV recorded the actual time range of ICU admission 
as: 2008–2010, 2011–2013, 2014–2016 or 2017–2019, we used the above fourth inclu-
sion criterion on MIMIC-IV to avoid time overlapping with MIMIC-III that might cause 
repeated inclusion of the same patients.

We extracted MTS data at hourly resolution for 38 dynamic clinical variables (Appen-
dix A.1). Firstly, we divided each ICU stay into a sequence of continuous and non-over-
lapping hourly intervals. Secondly, we collected the measurements of the 38 variables 
during every interval. Thirdly, in each interval, if there was only one measurement for a 
variable, we used this measurement for representation; if there were multiple measure-
ments for a variable, we used their aggregated measurement (maximum, minimum or 
mean as appropriate) (Appendix A.1); if there was no measurement for a variable, we 
marked it as missingness. After that we obtained the MTS of each ICU stay as our model 
input. We also extracted the static demographic data such as age, gender, admission type 
for statistical analysis, but not as sequential input of our models. Besides, for very few 
ICU stays with excessive length of hospitalization, we used their time series within 14 
days after admission to ICU in model training or validation.

Notations and task statement

We denoted an MTS of D clinical variables with a length of L hours as 
X = (x1, . . . , xL)T ∈ RL× D , where xt =

(
x1

t , . . . , xD
t

)
∈ RD  was a vector of the D 

variables in the t-th hour. xd
t ∈ R was the measurement or aggregated measurement of 

the d-th variable in the t-th hour, and xd
t = null if it was missing. We additionally intro-

duced a matrix M = (m1, . . . , mL)T ∈ {0, 1}L× D  to indicate data missingness in X , 
where md

t = 0 indicated that xd
t  is missing, while md

t = 1 otherwise. Then the ICU stay 
of each included patient was denoted as a sample S = (X, M).

In this study we focused on multi-task prediction of FD in the six organ systems pro-
posed by the Sequential Organ Failure Assessment (SOFA) score [25]. We chose SOFA 
score as it is the most widely used criteria to quantify organ dysfunction [2, 25, 26] and 
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all the components in SOFA are available in the three ICU databases. In order to per-
form prediction at an hourly frequency, we assessed the SOFA score for each organ sys-
tem in every hourly interval along the time series. The specific assessment rule was as: 
(1) if there was newly observed measurement related to an organ in current hour, the 
SOFA score of this organ was updated; (2) if no related measurement was observed in 
current hour, the SOFA score in previous hour was used; (3) if no related measurement 
was observed in the first hour of an ICU stay, the corresponding SOFA score was set to 
zero (defaulted as normal). In addition, for central nervous system (CNS) scoring, we 
defaulted the verbal Glasgow score (GCS) to be five if the patient had tracheal intuba-
tion, and for renal system scoring, we disused the 24-hour urine-output criterion in the 
first 23 h of an ICU stay as it was not available.

After assessing hourly SOFA scores, we defined hourly binary labels for the six organ 
systems (i.e. deteriorating = 1 and not-deteriorating = 0). We adopted the time-window 
setting similar to two previous studies [10, 16] which set an observation window, a gap 
window and a prediction window (Fig. 1). Specifically, when the model made prediction 
at the t-th hour, the observation window was the period from admission to the t-th hour 
and the MTS data during this period was analyzed for prediction; the prediction win-
dow was a future period used to identify whether FD occurred, and the label of an organ 
system was defined as deteriorating at the t-th hour if the maximum SOFA score of this 
organ system in the prediction window rose ≥ 1 score compared to that in the t-th hour 
[2]; gap window was the period between the observation and prediction window and 
it is preserved for conducting clinical intervention in advance. In this study we set the 
prediction window to be 4 h, and the gap window to be 4, 8, 16 and 24 h respectively to 
develop and validate our models. For a series of L hours, we performed hourly predic-
tion until the (L − gap_window − prediction_window)-th hour as labels of the fol-
lowing hours were indeterminable under our time-window setting.

Proposed model

Our proposed IOC-MT contained a shared encoder and six task-specific (or to say 
organ-specific) output heads which were correlated by the GAT module (Fig. 2). In this 
section we respectively introduced the shared encoder, the correlated output heads, the 
AAM and the loss function for model training.

Shared encoder

The shared encoder was composed of a linear layer ( Linear_enc) and a GRU network. 
It encoded an MTS sample S = (X, M) to a sequence of shared features Fs ∈ RL× Ds  
as following:

Fs = GRU(Linear_enc(X || M )) (1)

Fig. 1 Time axis for dynamic prediction (gap window = 8 h)
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where symbol || denoted concatenation of two matrices to produce (X| |M) ∈ RL× 2D

. Ds is the dimensionality of shared feature and the Linear_enc also had Ds neurons.

Correlated output heads

Each organ-specific output head contained two linear layers followed by a sigmoid acti-
vation function, and a GAT module was used between the first and second linear layers 
of all the six output heads for information aggregation.

The first linear layer was responsible for projecting the Fs to organ-specific features. 
We used the following indices to denote different organ systems: {1: Respiration; 2: 
Coagulation; 3: Liver; 4: Cardiovascular; 5: CNS; 6: Renal}, and the organ-specific fea-
tures for the i-th organ Fi were computed as:

Fi = Linear 1_i (Fs) , where i ∈ {1, 2, 3, 4, 5, 6} (2)

where Linear1_i was the first linear layer of the i-th output head and all the six first 
linear layers had Ds neurons, so Fi had the same size of L × Ds as Fs.

Then the GAT module took these organ-specific features as input and output corre-
sponding aggregated features. Specifically, in the t-th hour, we had six organ-specific 
features F t

i ∈ RDs , i = 1, ., 6. The GAT constructed a graph of six nodes, where each 
node represented an organ system and F t

i  was node’s feature. We illustrated the graphic 
structure and the adjacency matrix A ∈ {0, 1}6× 6 of our GAT module in Fig. 2. The 
element in the i-th row and j-th column of A was denoted as aij , and aij = 1 indicated 
that there was an edge from node i to j, and aij = 0 otherwise. We constructed such a 
graph based on the clinical prior knowledge that each organ system may be affected by 

Fig. 2 Overall architecture of IOC-MT (it only demonstrated the computation of the first output head for brevity)
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any other organ system. In this graph, given any two different nodes i and j there were 
two edges to model their correlation: eij  and eji, where eij  was the edge from i to j 
and eji was reverse. The value of eij  indicated the importance of node i’s feature F t

i  to 
node j. The GAT computed the value of each edge based on attention mechanism [21]. 
We used the scaled dot product attention [27] instead of the original attention mecha-
nism of GAT as we found that it performed better. Taking node j’s information aggrega-
tion as example, we firstly computed the values of the edges to node j as:

eij =
(
F t

j Wq

)
(F t

i Wk)T
√

Ds

 (3)

where i could be any node but except j itself, and Wq, Wk ∈ RDs× Ds  were the train-
able parameters for query and key in attention mechanism. The eij  was a scalar. Then 
we normalized the edge values into attention weights as:

α ij = softmaxi (eij) = exp (eij)∑
1≤ k≤ 6,k ̸= jexp (ekj)  (4)

Using these attention weights, we computed weighted sum of the original features of 
node j’s neighbor nodes as the aggregated feature of node j:

∼
F

t

j =
∑

1≤ k≤ 6,k ̸= jα kjF t
k (5)

Therefore the aggregated information from node j’s neighbor nodes. After information 
aggregation, we subsequently used aggregated 

∼
F

t

j  to adjust the original F t
j  as following:

F̂ t
j = (1 − β )F t

j + β
∼
F

t

j
 (6)

where F̂ t
j  was the adjusted feature of node j, and β ∈ [0,1] was the coefficient deter-

mining adjustment strength. In order to make such an adjustment to be adaptive when 
time and organ varied, we let our model to learn the β  rather than set β  as a fixed 
hyperparameter. The β  for node j at the t-th hour was computed as:

β t
j = sigmoid(Linear_β (F t

j ||
∼
F

t

j)) (7)

Where Linear_β  was a linear layer projecting 2Ds-dimension vector to scalar and it 
was identical across time series of all the six organ systems. Finally, the output was the 
predicted risk of FD in organ j at the t-th, which was:

Y t
j = sigmoid(Linear2_j(F̂ t

j )) (8)

where Linear2_j was the second linear layer of the j-th output head. Notably, the 
whole IOC-MT performed parallel computation in all the output heads to output six 
predicted risks simultaneously.

Adaptive adjustment mechanism

As the above computation showed, the IOC-MT was able to adjust its original predic-
tion for an organ after integrating related information from the other organs. As formula 
(5) showed, the larger the inter-organ attention weight α kj  was, the more important 
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the organ k’s original feature was for organ j. And as formula (6) showed, the larger the 
β  value was, the more adjustment was made by the aggregated feature. Thus, we could 
clearly understand the AAM of IOC-MT through the α  and β  value. In this study, we 
analyzed the α  and β  value both at overall and individual level. At overall level, for 
each organ system, we counted all the β  values over the time series of all the patients 
in external validation and calculated the sample proportion (here a sample referred to 
a certain hour in a patient’s time series) in the β  groups of 0.0-0.2, 0.2–0.4, 0.4–0.6, 
0.6–0.8, 0.8-1.0. Then we calculated the average attention weight of samples in each β  
group to show the overall α  assignment. At individual level, we showed the adjusted 
predicted risks and the original predicted risks of the IOC-MT for the six organ systems 
of a selected patient. The adjusted predicted risks were obtained by formula (8), while 
the original predicted risks were obtained by directly feeding the original organ-specific 
feature F t

j  into the corresponding second linear layer Linear2_j, without implement-
ing GAT’s information aggregation and adjustment. In addition, the α  and β  value and 
SOFA score for every organ at every hour were also showed for this patient. We used 
this individual example to demonstrate how the AAM worked.

Model training

The IOC-MT was trained by a joint binary cross entropy (BCE) loss function. Corre-

sponding to Y t
j  in formula (8), we used 

−
Y t

j ∈ {0,1} to represent the label of organ j at 
the t-th hour. Then the joint BCE loss for a sample of L-hour length was as:

Loss = 1
L − W

∑
L−W
t=1

∑
6
j=1µ j(

−
Y t

j log(Y t
j ) + (1 −

−
Y t

j )log( 1 − Y t
j )) (9)

where W = gap_window + prediction_window, so L − W  was the length of hourly 
prediction as mentioned before. The µ j  was the weight coefficient of organ j in the 
total loss. We set all µ j  to be 1/6 in this study, indicating that the six organ systems were 
equally important. The formula (9) was the joint loss for one sample, while for a batch of 
samples we used the mean of their joint losses.

Baseline models

We compared the IOC-MT to three ST deep sequential models and two ST non- 
sequential machine learning models as the following:

GRU single-task model (GRU-ST) It used the same Linear_enc and GRU network as 
IOC-MT, but had only one output head. We developed six GRU-ST models to predict FD 
in the six organ systems respectively. The loss function for each model was the BCE loss 
between predictions and labels for a single organ system.

LSTM single-task model (LSTM-ST) It was the same as GRU-ST, except that we used 
LSTM network instead of GRU. The LSTM is another commonly used gated variant of 
RNN for modeling sequential data [28].

Transformer single-task model (Transformer-ST) It was also a single-task model with 
one output head, while the encoder was a Transformer encoder [27] using masked multi-
head attention. We provided the detail of the Transformer encoder in Appendix A.2.
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Extreme gradient boosting single-task model (XGB-ST) XGB was a classic machine 
learning model which was composed of many basic decision trees and employed an 
improved boosting ensemble algorithm [29]. XGB was incapable of handling MTS data, 
so it only analyzed the multivariate data in the current hour (i.e. the current row vector of 
the concatenated matrix X || M ) for real-time prediction rather than analyzing the MTS 
from admission to the current hour.

Random forest single-task model (RF-ST) RF was another classic machine learning 
model which also composed of decision trees and used a bagging ensemble algorithm 
[30]. It also used the current-hour data for real-time prediction.

Ablation study

To evaluate the contribution of the GAT, AAM and missing indicators M  to model per-
formance, we proposed three ablation models. The first was IOC-MT without AAM, 
where the β  value in formula (6) was fixed to be 0.5 and the computation of formula (7) 
was omitted. The second is IOC-MT without GAT, where the GAT module was omitted. 
And it should be noted that the AAM was also omitted along with GAT as the aggre-
gated feature derived from GAT was requisite to implement the AAM (see formula (7)), 
so this second model was just a routine MT framework composed of a shared encoder 
and multiple separate output heads. The last is IOC-MT without missing indicators, 
where we disused the matrix of missing indicators M  and just used X  as model input 
in which the missing measurements were imputed by default zero. We compared the 
AUROC and AUPRC of these ablation models to the full IOC-MT in internal and exter-
nal validation. In addition, we also compared their time cost per epoch during model 
training to evaluate the training efficiency of these models.

Experimental setup

We randomly divided the MIMIC-III dataset into the training set (80%) and the vali-
dation set (20%). The MIMIC-IV and eICU-CRD dataset were respectively used as the 
internal and external test set (Fig. 3). We normalized the measurements of all the data-
sets by removing the mean and scaling to unit variance, where the mean and variance 
of each variable were derived from the training set. We used the Adam optimizer [31] 
to iteratively tune model parameters on the training set. For each model we performed 
model training for 50 epochs, and saved the optimal parameters which achieved the low-
est loss on the validation set. Then we evaluated model performance on the internal and 
external test set. For each model type, we repeated the above model training and valida-
tion experiments five times using different random initialization of model parameters to 
obtain the mean and 95% confidence interval (CI) of the metrics for model performance. 
Besides, we performed grid search to select optimal model hyperparameters that obtain 
better performance on the validation set, and the detail of the searching ranges for the 
major hyperparameters of each model was provided in Appendix A.5.

Statistical analysis and evaluation of model performance

We compared the baseline characteristics of included patients from the three databases. 
Continuous variables were described as mean (standard deviation) or median [inter-
quartile range], and categorical features were described as number (percentage). The 
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Statistical difference was analyzed using either F-test, K-W test or Chi-square test as 
appropriate, and two tailed P < 0.05 was considered as statistical significance.

We evaluated both the model discrimination and calibration in the internal and exter-
nal validation. The area under the receiver operating characteristic curve (AUROC) and 
the area under the precision-recall curve (AUPRC) were used to assess model discrimi-
nation, and the calibration curve was used to visualize model calibration [32]. To obtain 
the calibration curve for each model type, we plotted means of the decile-binned pre-
dicted probabilities of the five model instances versus corresponding means of actual 
probabilities in the patients in each bin. The calibration was assessed by inspecting the 
proximity between the calibration curve and the identity line of y = x which represented 
perfect calibration.

Results
Participants and baseline characteristics

We ultimately included 19,372 patients from MIMIC-III, 11,008 patients from MIMIC-
IV, and 43,406 patients from eICU-CRD (Fig. 3), and Table 1 showed the comparison. 
The result showed that patients from the three databases had no statistical difference in 
gender, age and hospital mortality, but had difference in BMI, admission type, length of 
ICU stay and SOFA of the first 24 h. We also provided the overall incidence rate of FD 
in the six organ systems under different gap windows. In these three databases, the car-
diovascular system had the highest FD rate (except the eICU-CRD under 24 h gap) and 
the liver system had the lowest FD rate. All organ systems showed gradually increasing 
FD rates when a longer gap window was set, where the cardiovascular system showed 
the minimal increment. The eICU-CRD showed obviously different FD rates compared 
to MIMIC-III and MIMIC-IV, especially that it had lower rate in CNS system and higher 
rate in renal system.

Fig. 3 Flow chart for patient selection and experiment setup
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Model performance

The AUROC and AUPRC of all the models in external validation on eICU-CRD were 
summarized in Fig. 4, and their calibration curves in external validation were provided 
in Fig. 5. Considering limited space, the results of internal validation on MIMIC-IV were 
provided in Appendix A.3 and A.4. The optimal hyperparameters of our models were 
provided in Appendix A.5.

As Fig.  4 showed, the IOC-MT had comparable AUROC and AUPRC to LSTM-ST, 
GRU-ST and Transformer-ST for most organ systems under the four gap windows 
(even higher in some cases), and these four deep models obviously outperformed the 
other two machine learning models, XGB-ST and RF-ST. For different organ systems, 

Table 1 Comparison of baseline characteristics
MIMIC-III
(n = 19372)

MIMIC-IV
(n = 11008)

eICU-CRD
(n = 43406)

P-value

Gender (male), n (%) 10,926 (56.4) 6264 (56.9) 24,080 (55.5) 0.079
Age (y, mean (SD)) 63.74 (16.41) 63.47 (16.08) 63.44 (16.09) 0.318
BMI (kg/m2, mean (SD)) 28.72 (7.50) 28.99 (7.82) 29.37 (8.53) < 0.001
Admission type, n (%) < 0.001
 Medical 13,134 (67.8) 7133 (64.8) 34,440 (79.3)
 Unscheduled surgical 3797 (19.6) 3600 (32.7) 8006 (18.4)
 Scheduled surgical 2441 (12.6) 275 (2.5) 960 (2.2)
Length of ICU stay (days, median [IQR]) 3.9 [2.7, 7.1] 3.9 [2.7, 6.8] 3.0 [2.0, 5.0] < 0.001
SOFA of first 24 h (median [IQR]) 4.0 [3.0, 7.0] 5.0 [2.0, 8.0] 4.0 [2.0, 7.0] < 0.001
Hospital mortality, n (%) 2499 (12.9) 1343 (12.2) 5447 (12.5) 0.266
Respiration deterioration rate (%)
 4 h gap 3.9 3.7 2.6 < 0.001
 8 h gap 5.3 4.9 3.7 < 0.001
 16 h gap 7.7 7.2 5.6 < 0.001
 24 h gap 9.9 9.1 7.3 < 0.001
Coagulation deterioration rate (%)
 4 h gap 4.3 4.5 4.0 < 0.001
 8 h gap 5.9 6.2 5.7 < 0.001
 16 h gap 8.5 8.8 8.5 < 0.001
 24 h gap 10.5 10.7 10.8 < 0.001
Liver deterioration rate (%)
 4 h gap 1.4 1.3 1.3 < 0.001
 8 h gap 1.9 1.8 1.9 < 0.001
 16 h gap 2.9 2.8 3.0 < 0.001
 24 h gap 3.8 3.6 3.9 < 0.001
Cardiovascular deterioration rate (%)
 4 h gap 21.8 20.6 17.5 < 0.001
 8 h gap 22.5 21.3 18.2 < 0.001
 16 h gap 23.2 21.7 18.5 < 0.001
 24 h gap 23.6 21.8 18.5 < 0.001
CNS deterioration rate (%)
 4 h gap 15.6 13.7 6.9 < 0.001
 8 h gap 17.9 16.4 8.9 < 0.001
 16 h gap 19.5 18.0 10.8 < 0.001
 24 h gap 20.3 18.5 12.0 < 0.001
Renal deterioration rate (%)
 4 h gap 4.7 5.6 7.9 < 0.001
 8 h gap 6.4 7.7 11.2 < 0.001
 16 h gap 9.0 10.9 16.8 < 0.001
 24 h gap 10.7 13.0 20.1 < 0.001
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the performance of these models showed certain variation. The GRU-ST had higher 
AUROC and AUPRC for CNS and renal system (except under 4 h gap for renal system), 
but it had lower AUROC for liver system. The Transformer-ST had high AUROC for 
liver system, but performed worse than the other three deep models for coagulation, 
CNS and renal system. As the only MT model, the IOC-MT kept relatively balanced 
performance among the six organ systems.

Figure 5 demonstrated that all the six models had good calibration for cardiovascular 
system under all gap windows. For renal system, the four deep models also showed rela-
tively good calibration, but the XGB-ST and RF-ST had biased calibration. For coagula-
tion system, the IOC-MT, LSTM-ST and Transformer-ST showed better calibration than 
the other three models under 16 and 24 h gap, and under 8 and 16 h gap the IOC-MT 

Fig. 4 AUROC and AUPRC for external validation
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Fig. 5 Calibration curves for external validation
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had better calibration. For respiration and CNS system, all the models showed biased 
calibration to a certain degree, and they overestimated the risk in most cases. At last, all 
the models show the poorest calibration for liver system, as they also overestimated the 
risk especially in the high predicted-risk bins.

In the internal validation, Appendix A.3 showed that the models had higher AUROC 
and AUPRC for most organ systems compared to the external validation (except the 
renal system). The performance difference among the models and organ systems was 
similar to the external validation. The calibration curves in Appendix A.4 showed that 
all the models had good calibration for cardiovascular system except the RF-ST, and 
these models also had good calibration for renal system except the Transformer-ST and 
RF-ST. Besides, all the models except RF-ST had better calibration for CNS system in 
the internal validation than in the external test, and the four deep learning models also 
had better calibration for liver system.

Ablation study

Tables  2 and 3 compared the AUROC and AUPRC of the ablation models to the full 
IOC-MT in external and internal validation under 4 h gap, and their time cost per epoch 
for model training were provided in the rightmost column of the tables. The results 
under 8, 16, 24 h gap were provided in Appendix A.6. Our results showed that in most 
cases, the full IOC-MT performed better than the ablation model without AAM, espe-
cially for the CNS and renal system, and the ablation model without AAM performed 
better than the model without GAT. This showed the contribution of GAT and AAM 
to improving the model’s overall performance for MT prediction. Besides, the full IOC-
MT also outperformed the ablation model without missing indicators, which indicated 
the importance of marking data missingness. The result of training time showed that 
introducing GAT in routine MT framework prolonged the training time by about 8–10 s 
per epoch under different gap windows (Without AAM vs. Without GAT), and further 
introducing AAM prolonged the time by about 3–5 s per epoch (Full model vs. Without 
AAM).

Adaptive adjustment mechanism in IOC-MT

Figure 6 showed the overall α  and β  values of an IOC-MT model in the external vali-
dation under 4 h gap. For all the six organ systems, the sample proportion of the 0.0-0.2 
β  group was the largest. This indicated that in most cases the IOC-MT only made slight 
adjustment to the original feature. In the 0.4–0.6, 0.6–0.8 and 0.8-1.0 β  group where 
the model made more adjustment, the six organ systems had different attention assign-
ments. Specifically, respiration system mainly relied on CNS system; coagulation system 
relied more on liver system; liver system mainly relied on respiration, coagulation and 
CNS system; cardiovascular system mainly relied on liver system; CNS system relied on 
all the other organ systems in 0.4–0.6 and 0.6–0.8 β  group, and mainly relied on liver 
system in 0.8-1.0 β  group; renal system relied more on coagulation and cardiovascu-
lar system. It should be noted that in Fig. 6 each organ system assigned zero attention 
weight on itself as the original feature of itself was not included in its own information 
aggregation (Formula (4)).

At individual level, we selected a patient staying in ICU for 55 h from the external test 
set, and used the same IOC-MT model to perform dynamic prediction for the six organ 



Page 14 of 22Zeng et al. BioData Mining           (2025) 18:31 

Ta
bl

e 
2 

Ab
la

tio
n 

st
ud

y 
fo

r e
xt

er
na

l v
al

id
at

io
n 

un
de

r 4
 h

 g
ap

Re
sp

ira
tio

n
Co

ag
ul

at
io

n
Li

ve
r

Ca
rd

io
va

sc
ul

ar
CN

S
Re

na
l

Tr
ai

ni
ng

 ti
m

e 
(s

/
ep

oc
h)

AU
RO

C
AU

PR
C

AU
RO

C
AU

PR
C

AU
RO

C
AU

PR
C

AU
RO

C
AU

PR
C

AU
RO

C
AU

PR
C

AU
RO

C
AU

PR
C

W
ith

ou
t A

AM
0.

72
2 

± 
0.

00
7

0.
08

0 
± 

0.
00

1
0.

81
3 

± 
0.

00
9

0.
14

5 
± 

0.
00

1
0.

77
7 

± 
0.

00
7

0.
05

3 
± 

0.
00

1
0.

82
6 

± 
0.

00
1

0.
51

0 
± 

0.
00

2
0.

64
6 

± 
0.

00
1

0.
13

1 
± 

0.
00

1
0.

73
7 

± 
0.

01
6

0.
18

5 
± 

0.
00

7
27

.4
 ±

 0
.1

W
ith

ou
t G

AT
0.

72
0 

± 
0.

00
2

0.
07

3 
± 

0.
00

5
0.

80
4 

± 
0.

00
1

0.
14

3 
± 

0.
00

3
0.

76
2 

± 
0.

00
2

0.
05

0 
± 

0.
00

3
0.

82
1 

± 
0.

00
4

0.
48

9 
± 

0.
01

0
0.

63
4 

± 
0.

00
4

0.
12

4 
± 

0.
00

4
0.

73
1 

± 
0.

01
3

0.
18

6 
± 

0.
00

6
18

.4
 ±

 0
.1

W
ith

ou
t m

iss
in

g 
in

di
ca

to
rs

0.
72

3 
± 

0.
00

6
0.

08
1 

± 
0.

00
2

0.
77

7 
± 

0.
00

5
0.

12
5 

± 
0.

00
2

0.
76

1 
± 

0.
00

5
0.

04
9 

± 
0.

00
2

0.
81

0 
± 

0.
00

1
0.

48
3 

± 
0.

00
3

0.
63

2 
± 

0.
00

4
0.

12
5 

± 
0.

00
1

0.
80

0 
± 

0.
00

9
0.

24
9 

± 
0.

01
9

34
.8

 ±
 0

.6

Fu
ll 

m
od

el
0.

72
9 

± 
0.

00
5

0.
08

5 
± 

0.
00

1
0.

81
3 

± 
0.

00
3

0.
13

9 
± 

0.
00

6
0.

77
4 

± 
0.

00
9

0.
05

5 
± 

0.
00

3
0.

82
9 

± 
0.

00
3

0.
51

7 
± 

0.
00

8
0.

68
7 

± 
0.

00
4

0.
14

7 
± 

0.
00

4
0.

85
1 

± 
0.

01
6

0.
34

8 
± 

0.
01

9
32

.5
 ±

 0
.4



Page 15 of 22Zeng et al. BioData Mining           (2025) 18:31 

systems under 4 h gap. The result was showed in Fig. 7. The label at each hour could be 
inferred by the SOFA plot. For instance, the SOFA for respiration system was 0 at the 1st 
hour and the maximum SOFA in corresponding prediction window (6th to 9th hour) 
was 3, so the label at the 1st hour was deteriorating (positive). As the green square in the 
subplot of respiration system showed, the IOC-MT output up-adjusted predicted risks 
compared to its original prediction from 2nd to 4th hour, and the β  values in these 
hours were also higher than other hours. The lower-half subplot showed that the adjust-
ment mainly relied on liver and renal system. This adjustment made the model correctly 
predict the coming FD. Similar up adjustment was seen in the green squares in the coag-
ulation and renal subplot. The most significant adjustment occurred in cardiovascular 
system. In the two green squares, the SOFA score fluctuated between 0 and 1 (or 3 at 
11th hour), where most 0-score hours had positive label and 1- and 3-score hours had 
negative label. The original predicted risk kept high at all these hours, while the IOC-MT 
adjusted the risk down to almost zero at the 1- and 3-score hours. The β  values at these 
hours were more than 0.6 and the liver, renal and coagulation system contributed most 
to these adjustments. At last, for liver and CNS, most β  values along the time series 
were very low and there was almost no difference between the original and adjusted pre-
dicted risks.

Discussion
In this study we proposed a multi-task deep learning framework named IOC-MT for 
dynamically predicting FD in multiple organ systems. The IOC-MT took in MTS data of 
routinely monitored clinical variables in ICU, and output hourly predictions for patient’s 
six major organ systems simultaneously. The major contribution of this study was that 
we used the GAT module to model inter-organ correlation and introduced the AAM 
to adjust prediction. Our experimental results showed that the IOC-MT had compara-
ble performance to the classic ST deep learning models and outperformed the routine 
MT framework using separate output heads. In addition, the AAM of our IOC-MT was 
comprehensible through its intuitive attention weights α  and adjustment coefficient β , 
rather than be like a black box.

This study used the SOFA score to define organ dysfunction because: (1) it is the 
most commonly used scoring criterion for assessing the function of the most critical six 
organs, especially that sepsis 3.0 use it to define organ dysfunction [33]; (2) compared 
with other similar criteria, such as the Multiple Organ Dysfunction (MOD) score [34] 
and the Logistic Organ Dysfunction (LOD) score [35], SOFA shows similar or better 
prognostic value [36–38], and meanwhile it is more applicable as all its component vari-
ables are easily accessible; (3) it is convenient for clinicians to track the changes of organ 
function by regularly repeated scoring of SOFA. Generally, the SOFA score is calcu-
lated every 24–48 h in ICU [39], but we calculate hourly SOFA in this study in order to 
improve the timeliness of our model, since more frequent prediction enable clinicians to 
receive warning and start intervention timely. In a previous related study, cardiovascular 
dysfunction is defined as the onset of vasoactive medication and respiratory dysfunction 
is defined as the onset of mechanical ventilation [17]. Compared to SOFA score, such 
definitions take insufficient consideration of the early signs for organ dysfunction, such 
as fall of blood pressure or oxygenation index, so their trained model is unable to recog-
nize early FD.
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In this study we compare our IOC-MT to many baseline models, including three 
ST sequential deep models (LSTM, GRU, Transformer) and two ST non-sequential 
machine learning models (XGB, RF). In addition, we also assess three MT ablation 
models of the IOC-MT. All the models are validated on the internal and external test 
set, which increases the persuasiveness of our study. These models perform better in 
internal validation than in external validation. This is mainly because that the data dif-
ference between eICU-CRD and MIMIC-III is greater than that between MIMIC-IV 
and MIMIC-III (Table  1). The sequential models perform much better than the non-
sequential models, especially in the external validation, which shows their advantage for 
handling clinical MTS data and excellent generalizability for multi-center application. 
We prove that the GAT and AAM improve the overall performance of the routine mul-
tiple output-head MT framework, despite that they increase the time for model training 
time. The missing indicators are effective to handle data missingness in this study, as it 
not only improves the model performance but also slightly reduce the training time. We 
think that our proposed model architecture and related methods are also applicable to 
other scene of clinical MT prediction.

Although the IOC-MT achieve comparable performance to the ST deep models, its 
AUROC and AUPRC are still slightly lower in most cases of our experiments, and such 
a performance degradation is more significant for the ablation model without GAT (i.e. 
routine MT framework). This issue is referred to as negative transfer which is com-
mon for MT deep models [14]. The intrinsic reason for negative transfer is that training 
MT model is not as flexible as training ST model since the MT model needs to use one 
encoder to learn the shared feature for all the tasks. To mitigate negative transfer, a sort 
of method is to assign different subsets of parameters in the shared encoder to each task, 
which enable the shared encoder to encode multiple task-specific features rather than 
one shared feature. The previous SeqSNR [17] is belong to this method. We argue that 
this method may be more appropriate when the correlation of multiple tasks is not so 
close since it essentially use relatively independent components of the whole MT model 
to handle different tasks. Unlike this method, our method focuses on the output heads 
and their correlation, which is based on the professional knowledge that the organ sys-
tems are correlated. Our ablation study proves that introducing GAT and AAM can mit-
igate negative transfer of the routine MT framework.

The IOC-MT captures inter-organ correlations by the attention weights α  and adjust-
ment coefficient β . From the clinical perspective, these data-based correlations should 
have biological plausibility. When an organ relies on another for predicting itself, there 
should be reasonable causal relationship between them. Our results prove that in most 
cases IOC-MT has the biological plausibility. For instance, Fig. 6 shows that the respira-
tion system mainly relies on CNS system in high β  groups. This is reasonable as many 
CNS diseases can lead to respiratory dysfunction [40], so the information of CNS system 
should be valuable for predicting FD in respiration system. Similarly, coagulation system 
mainly relies on liver system (Fig. 6), which is also reasonable as liver is the major organ 
to synthesize coagulation factors and liver diseases often affect coagulation system [41]. 
Figure 6 also shows that the model predicts renal function based on cardiovascular sys-
tem. As we know, circulation failure and hypotension can cause hypoperfusion of kidney 
and lead to AKI [42]. Then the renal and cardiovascular subplots of Fig. 7 further prove 
this case. From 38th to 42nd hour, the IOC-MT adjusts the FD risk for renal system 
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upwards, and the adjustment is mainly based on cardiovascular system. Meanwhile, the 
cardiovascular SOFA of this patient is 1 during this period, indicating that he suffers 
from cardiovascular dysfunction. Thus, the IOC-MT successfully captures the correla-
tion that cardiovascular system can affect renal system. However, it should be noted that 
not all the correlations are so reasonable. For instance, Fig. 6 shows that the cardiovas-
cular system relies less on respiration system but more on liver system as β  increases. 
Nevertheless, as we know, the biological correlation between the respiration and cardio-
vascular system should be closer.

Our study has several limitations. Firstly, although data missingness is inevitable in 
our study, the method that uses previous SOFA score to fill the current missingness 
may produce unreliable labels, especially when the related variable is missing for a long 
period. For instance, the FD rate of liver system is very low in Table 1, but we find that 
the total bilirubin is relatively less recorded in the three databases (even only once in 1–2 
weeks). If there is elevated bilirubin which is not recorded (this possibility will increase 
as the missing period prolongs), the actual liver FD rate is underestimated and many 
real-time labels defined by our method may be false negative. This will cause biased pre-
diction of our model. Collecting more high-quality data is feasible for solving this issue. 
Secondly, we have not made modification on the shared encoder of our MT framework 
as this study focuses on modeling inter-organ correlation for MT prediction. We think 
that it is also promising to propose reasonable improvement for the shared encoder and 
we will perform further research in this direction. At last, our results show that the IOC-
MT needs additional training time compared to routine MT-framework. Although the 
increment of time cost is still acceptable as there were only six nodes in our GAT, it 

Fig. 6 The α  and β  values of an IOC-MT in the external validation under 4 h gap. Each subplot was for an organ 
system. The left half of each subplot was the sample proportion in each β  group, and the right half was the aver-
age attention weights in each β  group. For intuitive presentation, we used the abbreviation of organ to replace 
the mathematical symbol of attention weight. For instance, ‘Coag-> Resp’ represented the attention weight α 21 
which indicated the importance of coagulation system for predicting respiration function
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Fig. 7 Dynamic predictions for six organ systems of a patient by an IOC-MT under 4 h gap. Each subplot was for an 
organ system. The upper half of each subplot provided the hourly original and adjusted predicted risks, as well as 
hourly β  values and SOFA score for this organ. The lower half was the attention weights for information aggrega-
tion of this organ at each hour. The upper and lower half were aligned along the time axis, and the green square 
marked out the difference between the original and adjusted prediction
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will be computational expensive as tasks increase. Some previous studies propose effi-
cient modification on attention algorithm of GAT [43, 44], and we will perform related 
research to improve the efficiency of IOC-MT in our future work.

Conclusion
The IOC-MT is a promising deep learning framework for predicting FD in six organ 
systems. It can capture inter-organ correlation and adjust the prediction based on inter-
organ information aggregation. The IOC-MT has comparable performance to ST deep 
models and outperforms routine MT framework. The AAM of IOC-MT is intuitive and 
comprehensible.
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