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Abstract 

Background: Alzheimer’s disease (AD) is a complex disorder that affects multiple 
biological systems including cognition, behavior and physical health. Unfortunately, 
the pathogenic mechanisms behind AD are not yet clear and the treatment options 
are still limited. Despite the increasing number of studies examining the pairwise rela-
tionships between genetic factors, physical activity (PA), and AD, few have successfully 
integrated all three domains of data, which may help reveal mechanisms and impact 
of these genomic and phenomic factors on AD. We use high-dimensional mediation 
analysis as an integrative framework to study the relationships among genetic factors, 
PA and AD-like brain atrophy quantified by spatial patterns of brain atrophy.

Results: We integrate data from genetics, PA and neuroimaging measures collected 
from 13,425 UK Biobank samples to unveil the complex relationship among genetic 
risk factors, behavior and brain signatures in the contexts of aging and AD. Specifically, 
we used a composite imaging marker, Spatial Pattern of Abnormality for Recognition 
of Early AD (SPARE-AD) that characterizes AD-like brain atrophy, as an outcome variable 
to represent AD risk. Through GWAS, we identified single nucleotide polymorphisms 
(SNPs) that are significantly associated with SPARE-AD as exposure variables. We 
employed conventional summary statistics and functional principal component analy-
sis to extract patterns of PA as mediators. After constructing these variables, we utilized 
a high-dimensional mediation analysis method, Bayesian Mediation Analysis (BAMA), 
to estimate potential mediating pathways between SNPs, multivariate PA signatures 
and SPARE-AD. BAMA incorporates Bayesian continuous shrinkage prior to select 
the active mediators from a large pool of candidates. We identified a total of 22 media-
tion pathways, indicating how genetic variants can influence SPARE-AD by altering 
physical activity. By comparing the results with those obtained using univariate media-
tion analysis, we demonstrate the advantages of high-dimensional mediation analysis 
methods over univariate mediation analysis.

Conclusion: Through integrative analysis of multi-omics data, we identified several 
mediation pathways of physical activity between genetic factors and SPARE-AD. These 
findings contribute to a better understanding of the pathogenic mechanisms of AD. 
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Moreover, our research demonstrates the potential of the high-dimensional mediation 
analysis method in revealing the mechanisms of disease.

Keywords: High-dimensional mediation analysis, Physical activity, Genetic risk factors, 
Alzheimer’s disease, SPARE-AD index, Disease mechanism

Background
 As the population ages, increasing research efforts are devoted to studying human 
aging process and age-related diseases such as neurodegenerations [1–4]. Alzheimer’s 
disease and related dementias (ADRD) remain formidable challenges in the pub-
lic health landscape. The disease has demonstrated profound societal and economic 
impact, affecting millions globally and leading to significant public health burdens. As 
of 2023, an estimated 6.7 million Americans aged 65 and older are living with Alzhei-
mer’s dementia, underlining its status as one of the costliest conditions to the society 
[5]. This prevalence is projected to escalate, compounding the urgency for effective 
interventions. However, to this date, though there are numerous AD-related studies 
[6–8], the pathogenic mechanisms for AD remain not well understood, and little pro-
gress has been made for identifying effective solutions for treating and managing the 
disease. Given the complexity and heterogeneity of how the disease affects human 
body, it might be necessary to integrate multimodal and multi-omics measures when 
revealing the biological mechanisms and identifying potential targets for therapeutics 
[9].

Recent studies have shown physical activity (PA) patterns are heritable traits and are 
correlated with several known genetic risk factors of AD including APOE gene, the 
best-known gene associated with AD [10]. Some studies suggest that increased physi-
cal movement might be beneficial reducing AD risk [11–14]. However, due to the lack 
of appropriate data and statistical methods for handling complex multi-omics data, few 
studies have directly linked physical activity with well-known AD-related risk factors 
and biomarkers such as genetic variants brain changes, and extensively evaluate the rela-
tionship of the three.

Mediation analysis has emerged as one of the powerful and increasingly popular tools 
in biomedical studies and clinical research [15–21]. It enables unraveling of the mech-
anisms and pathways through which causal effects operate. In our setting, we have a 
group of genetic risk factors to be considered as exposure variables. Additionally, there 
might be a group of potentially high-dimensional mediators that could reside on the 
pathway between each exposure and outcome variable. This poses analytic challenges 
that could not be addressed by the classical univariate mediation analysis. High-dimen-
sional mediation modeling techniques that account for correlations among multiple 
mediators and identify significant mediating effects are desirable [22–25]. In this paper, 
we utilize the recent advances of high-dimensional mediation analysis methodologies to 
investigate the joint relationship among genetics, physical activity and AD-related neu-
roimaging markers [26–32]. Figure 1 shows a potential mediation relationship: physical 
activity might mediate the effect of genetic variation on AD-like brain atrophy index. By 
identifying such an effect, we can better understand the mechanisms of action among 
these three factors, providing recommendations and insights for treating or mitigating 
the progression of AD
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Methods
Study population

The UK Biobank (UKBB) is a large prospective cohort study which enrolled more than 
500,000 individuals aged from 37 to 70 years with approximately 88% having British 
ancestry [33]. The UK Biobank collected an exceptional breadth and depth of informa-
tion on various factors including sociodemographic, lifestyle, environment, accelerom-
etry, imaging, and genetics. Participants were recruited from the United Kingdom with 
initial enrollment carried out from 2006 to 2010. Our study included UKBB samples with 
genetic data, structural magnetic resonance imaging (MRI) data used for calculating the 
AD-like brain atrophy score, and physical activity data recorded from accelerometers.

Physical activity data

Physical activity measures human behavior and activity levels, which are related to the 
effects of genetic variants and Alzheimer’s disease on individuals [10, 13]. In our study, 
we extracted features from physical activity data which were collected from a subset of 
UKBB participants using tri-axial wrist-worn accelerometers for up to 7 days [34] based 
on previous literature using multiple approaches as mediators. We included the physi-
cal activity data from 17,998 subjects who also have structural MRI collected. Figure 2 
displays the daily epoch-level physical activity intensities of an example subject from 
10:00am to 9:59am (next day) over a continuous seven-day period. The raw data consist 
of the average acceleration measured in 5-second intervals for each individual, which 

Fig. 2 Graph of activity counts over time of a certain participant. The Y-axis represents activity counts, and 
the X-axis represents time (from 10:00 AM on the first day to 10:00 AM on the second day)
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provides sufficient resolution for distinguishing different types of physical activity (sed-
entary, light, moderate, vigorous).

We further aggregated the 5-second level data into minute-level resolution by calcu-
lating the average of 5-second interval within a minute to reduce the computation cost. 
We applied similar exclusion criterion as in Leroux et al. [35] to ensure data quality and 
apply the same pipeline for extracting a vector of physical activity features.

Physical activity features

We extracted two types of physical activity features, conventional summary statistics 
and principal component (PC) scores from functional principal component analysis 
(PCA). The set of conventional summary statistics are interpretable and commonly used, 
which include total acceleration (TA), total log (1 + acceleration) which is labeled total 
log acceleration (TLA), TLA in 2-hour windows, total sedentary time (ST), where seden-
tary is defined for each minute if the average milli-g in a particular minute below a given 
threshold, and others. There are 27 summary statistics in total; and Table 1 shows a few 
examples.

These features are derived for each day of every subject’s observation. To aggregate 
across multiple days, we then calculated the mean and standard deviation (SD) of each 
summary statistics across days, resulting in a total of 54 features per subject.

Although conventional summary statistics are easy to obtain and understand, they 
might result in a loss of information due to the radical data compression. Hence, we 
further perform data-driven feature extraction using functional PCA (FPCA) to bet-
ter capture complex dependency structures in the time series of high-resolution activ-
ity intensities. FPCA is an extension of traditional PCA method in the functional data 
analysis field where the data objects are continuous functions or curves of time or space, 
rather than finite-dimensional vectors. Such approaches have been widely adapted to 
analyze patterns of physical activity data [34, 35].

To mitigate the significant skewness in the activity count data, we first transform the 
minute-level activity intensity using the transformation x = log(1 + a) , where a rep-
resents the activity count. This transformation also ensures that zero counts remain 
zero. We then apply FPCA to obtain a set of PC scores for each subject each day. Let 
Ji represent number of days of accelerometry data for subject i = 1, . . . , N  and let J  
be the total number of days of data. The log-transformed activity count data matrix, X , 
is J × 1440 dimensional. We use the fast covariance estimation (FACE) approach [36] 
implemented in the ‘fpca.face()’ function of the ‘refund’ [37] package in R to PC estima-
tions efficiently for high dimensional data. Subsequently, we projected each day’s activity 
intensity data onto the first K PCs (see Fig. 3 for a few examples) and calculated the cor-
responding principal scores. More specifically, let cijk be the score for subject i , on day 
jand principal component k . We then construct 2 K variables by computing the mean 
and standard deviation of these subject-specific scores:

mik =
−
cik=

1

J

Ji

j=1

cikj , sik = sd(cik) =

Ji
j=1

cijk−
−
cik

2

Ji − 1
, i = 1, . . . ,Nk = 1, . . . ,K = 50
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We derived 50 principal components from FPCA and got 100 features from this 
approach, including 50 from the mean measures and 50 from the standard deviation 
measures. Hence a total of 154 features are generated using conventional and data-
driven feature extraction methods from accelerometry data, which then served as the 
potential mediator variables.

Imaging data

The imaging outcome used in our study is a composite brain atrophy biomarker, SPARE-
AD (Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s disease) index 
[38], derived from volumetric measures of structural MRI data from UK Biobank study. 
The MRI scans were processed and harmonized using standards from the Imaging-
Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) con-
sortium [39]. The images underwent magnetic field intensity inhomogeneity correction 
[40] and brain segmentation using MUSE [41], a MUlti-atlas Segmentation method that 
utilizes Ensembles of registration algorithms and parameters along with locally optimal 
atlas selection. Volumes of region-of-interest are then calculated based on the MUSE 
segmentation as input for deriving SPARE-AD. More details about image preprocessing 
are available in [40].

SPARE‑AD index

Machine learning-based aging indexes have emerged as powerful tools in aging research, 
providing a detailed understanding of the aging process beyond what traditional meas-
ures offer [42–45]. We adopted SPARE-AD (Spatial Pattern of Abnormality for Recog-
nition of Early Alzheimer’s disease) index [38] to quantify AD-like brain atrophy. The 
SPARE-AD index is a neuroimaging biomarker tool developed to identify early stage of 
AD by capturing spatial patterns of brain atrophy associated with the disease. It aids in 

Table 1 Conventional Summary statistics. Note that TLAC (1-12) represents the total log 
acceleration within twelve 2-hour windows: 10am-12pm, 12pm-2pm, 2pm-4pm, 4pm-6pm, 
8pm-10pm, 10pm-12am, 12am-2am, 2am-4am, 4am-6am, 6am-8am, and 8am-10am

Summary statistics Description

TAC Total acceleration

TLAC Total log acceleration

TLAC (1–12) Total log acceleration during two-hour windows

ST Sedentary/sleep minutes

LIPA Light-intensity physical activity minutes

MVPA Moderate-to-vigorous activity minutes

DARE Daytime activity ratio estimate

SBout Average duration of continuous sedentary or sleep periods for each day

ABout Average duration (in minutes) of continuous active periods for each day

SATP Sedentary/sleep to active transition probability

ASTP Active to sedentary/sleep transition probability

Timing of M10 Mid-point of the ten most active hours of the day

Timing of L5 Mid-point of the five least active hours of the day

M10 Average log acceleration during the ten most active hours of the day

L5 Average log acceleration during the five least active hours of the day

RA Relative amplitude
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distinguishing between individuals with cognitively normal (CN), mild cognitive impair-
ment (MCI), and AD, as well as predicting progression from CN to MCI and from MCI 
to AD by quantifying AD-related patterns of brain atrophy. This index has been widely 
used in AD-related studies and has shown great performance in predicting AD risk [46, 
47]. In our sample, positive SPARE-AD index accounts for 4.2%, while negative SPARE-
AD index accounts for 95.8%, as shown in Fig. 4. SPARE-AD index was computed using 
the imaging data from UKBB, and the machine learning model is based on previous 
independent studies [38, 40, 48].

Genetic data

Genetic data are sourced from the UKBB and processed according to established proto-
cols [49]. The preprocessing data pipeline includes imputation and quality control (QC). 
Initially, subjects related to the second degree or closer were removed. The data were 
then refined by excluding multiallelic variants, variants with more than 3% missing call 
rates, those with minor allele frequencies below 1% and variants not meeting the Hardy-
Weinberg equilibrium with a p-value threshold of 1e-10. Further filtering excluded sub-
jects with missing call rates over 3% and those whose heterozygosity rate deviated five 
standard deviations from the norm. The final step involved synchronizing the quality 
controlled (QCed) imputed genotyping data with the QCed imaging data. The resulting 
UKBB imputed genetic dataset consisted of 482,831 SNPs and 38,195 subjects, which 
was subsequently used in our GWAS. Additionally, the first 50 genetic principal compo-
nents (PCs) were derived for further analysis.

Genetic variants selection

To identify the genetic variants for our study, we used SAIGE [50] to filter out the 
genetic variants significantly associated with the SPARE-AD index. Scalable and Accu-
rate Implementation of GEneralized mixed model (SAIGE) is a statistical tool designed 
for large-scale association studies of complex traits using mixed models and has shown 
great performance in many studies [51, 52]. It addresses challenges such as population 
stratification and relatedness among individuals which are common in traditional mixed 
model analyses for GWAS. We downloaded a total of 1,048,575 SNPs, setting the p-value 
threshold at 5e-8. The covariates included in our analyses were sex, age, body mass index 
(BMI) and 10 first genetic principal components. Table 2 summarized the sample char-
acteristics and the distributions of their physical activity features of the 13,425 partici-
pants included in our mediation analysis, stratified by SPARE-AD positive and negative.

High‑dimensional mediation analysis

We used BAyesian Mediation Analysis (BAMA), developed by Song et al. in 2020 [24, 
53], to identify active mediators from a large pool of candidate mediators. BAMA incor-
porates a Bayesian continuous shrinkage prior to identify active mediators in the high-
dimensional mediation analysis method (Fig. 5), This method could accommodate one 
exposure, one outcome and multiple mediators.

There are two primary models in this high-dimensional mediation analysis method: 
the outcome model and the mediator model.
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1) Outcome model:

Yi = M
T

i
βm + Aiβ a + C

T

i
βc + εYi

βm =
(

(βm)1, . . . , (βm)p
)T

,βc =
(

βc1, . . . ,β cq

)T
, εYi ∼ N

(

0, σ 2
e

)

,

assume there’s no interaction between Ai andMi, Ci denotes covariates

Fig. 4 Distribution of SPARE-AD indices, all the subjects are assumed to be cognitively normal. More positive 
SPARE-AD index indicates a higher AD risk, while more negative values imply lower AD risk

Table 2 Sample characteristics of the UKBB data used in our study. We used t-test to test the group 
difference for BMI, Chi-square test to test the group difference for sex

*p-values are calculated by: Sex, Chi-square test; BMI, t-test; Age, TAC_mean, TAC_sd, MVPA_mean, MVPA_sd, PC1_mean, 
PC1_sd, Wilcoxon rank-sum test; SPARE-AD index, Kolmogorov-Smirnov test

Characteristic Positive Negative Total p‑value*
n1 = 560 n2 = 12,865 n = 13,425

Age, median (range) 71.57(45.65–81.82) 64.52(45.46–81.19) 64.83(45.46–81.82) 1.50E-97

Sex: Female, No. (%) 187(33) 7172(56) 7359(55) 3.67E-25

Sex: Male, No. (%) 373(67) 5693(44) 6066(45)

BMI, mean (SD) 26.26(4.13) 26.09(3.98) 26.10(3.98) 0.44

TAC_mean, mean (SD) 39,079(10596) 41,603(12144) 41,498(12094) 3.29E-06

TAC_sd, mean(SD) 7970(4500) 9042(6460) 8997(6393) 7.06E-05

MVPA_mean, mean(SD) 89(45) 99(51) 99(51) 2.07E-05

MVPA_sd, mean(SD) 37(19) 39(21) 39(21) 3.00E-02

PC1_mean, mean(SD) 0.2677(9.21) 0.0063(9.43) 0.0172(9.42) 0.52

PC1_sd, mean(SD) 8.13(3.12) 8.05(3.12) 8.06(3.12) 0.57

SPARE-AD index 0.21(0.20) −0.73(0.34) −0.69(0.39) 0.00E + 00
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In the outcome model, the covariates include gender, age (at the measurement of 
physical activity), BMI, the first 10 genetic principal components and the time difference 
between measurement of physical activity and measurement of brain imaging. Adding 
the time difference as a covariate aim to eliminate the impact of the time gap between 
physical activity and brain imaging measurements.

2) Mediator model:

In the mediator model, the covariates include gender, age (at the measurement of 
physical activity), BMI, the first 10 genetic principal components.

As a high-dimensional mediation analysis method, BAMA has two fundamental 
assumptions:

1) All the mediators contribute small, non-zero effects in mediating the exposure-out-
come relationship

2) Only a small proportion of mediators exhibiting additional/large effects.

Based on these two assumptions, normal mixture prior on the coefficients are set in 
these two models:

Mi = A1αa + αcCi + εMi

αa =
(

(αa)1, . . . , (αa)p
)T

,αc =
(

αT
c1, . . . ,α

T
cq

)T
, εMi ∼ MVN

(

0,
∑

)

assume εYi and εMi are independent of Ai,Ci and each other

(

β m

)

j
∼ π mN

(

0, σ 2
m1

)

+ (1− π m)N
(

0, σ 2
m0

)

, σ 2
m1 > σ 2

m0

(α a)j ∼ π aN
(

0, σ 2
ma1

)

+ (1− π a)N
(

0, σ 2
ma0

)

, σ 2
ma1 > σ 2

ma0

Fig. 5 High-dimensional mediation analysis graph, where A denotes exposure (genetic variants), Y denotes 
the outcome (SPARE-AD index).  Mi denotes mediator i (certain physical activity pattern). In our study, there 
are 154 mediators, so p=154
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Using a posterior sampling algorithm, we calculate the Posterior Inclusion Probability 
(PIP), which indicates whether the mediators are active. We introduce indicator varia-
bles rm, ra ∈ {0,1}p to indicate which normal component 

(

β m

)

j
 and (α a)j are from. For 

mediator j, rmj = I
((

βm

)

∼ N
(

0, σ 2
m1

))

, raj = I
(

(αa)j ∼ N
(

0, σ 2
ma1

))

 , where I(· ) rep-
resents an indicator function. We can then estimate the posterior probability of both 
(

β m

)

j
 and (α a)j being in the normal components with larger variance as the PIP, defined 

as P(rmj = 1, raj = 1|Data) . The original paper suggests a more stringent threshold of 
median inclusion probability of 0.5. Considering the exploratory nature of our analysis, 
we selected the mediators with PIP>0 as potentially active mediators, and the larger the 
PIP, the higher the likelihood that the mediator is active. In our analysis, we examine 
whether each physical activity pattern mediates the effect of each SNP on the SPARE-
AD index.

The analysis was conducted using the ‘bama’ package in statistical software R with the 
default parameters and a random seed set by us; see below for the command:

This approach used Hastings-within-Gibbs algorithm to obtain posterior samples, and 
the results are from a Markov chain Monte Carlo (MCMC) approach. The number of 
iterations to run MCMC before sampling were set by ‘burnin’ and the default value 2000 
was used. ‘ndraws’ describes the number of draws to take from MCMC that includes 
burnin draws. We applied the same method as described in Song et al. in 2020 [24, 53] to 
calculate PIPs for our data.

Univariate mediation analysis

We employed the ‘mediate’ function from the ‘mediation’ package [54–58] to conduct 
univariate mediation analysis. We use bootstrapping with 1000 simulation times for 
each signal detected from high-dimensional mediation analysis and this analysis aimed 
to examine the signals identified from high-dimensional mediation analysis, allowing us 
to compare the performance of univariate mediation analysis with that of high-dimen-
sional mediation analysis.

Results
Genetic variants significantly associated with SPARE‑AD index

From the GWAS using SAIGE with the SPARE-AD index as the outcome, we identified a 
total of 22 SNPs which are significantly associated with SPARE-AD index, which will be 
used as exposure variables in subsequent analyses. Notably, 20 of these SNPs are located 
on the AMPD3 gene. Table 3 shows these 22 SNPs.

Mediation effects identified from high‑dimensional mediation analysis

We used 22 SNPs as exposures, 154 physical activity features as mediators, and the 
SPARE-AD index as the outcome variable. By BAMA, we identified a total of 259 sig-
nals whose PIP is greater than 0. Since BAMA does not check whether the relationship 

bama(Y = Y1, A = X1, M = as.matrix(M1), C1 = C11, C2 = C22, method =

′′BSLMM′′ , seed = 1245, burnin = 2000, ndraws = 2200, weights = NULL, inits =

NULL, control = list (k = 2, lm0 = le− 04, lm1 = 1, lma1 =, l = 1) )
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between exposure and mediator is significant, which matters in identifying mediation 
effects, we filtered out signals where the exposure-mediator relationship was not signifi-
cant using linear regression (p-value > 0.05) and there are 23 signals remaining. These 
signals meet the definition of a mediation effect: the mediator is active, as determined by 
BAMA, the outcome-exposure relationship is significant as confirmed by linear regres-
sion, and the outcome-exposure relationship is significant as confirmed by GWAS with 
the SPARE-AD index as the outcome variable. Table 4 shows these findings.

From Table 4, the patterns of PA always serve as a positive mediator in the signals we 
identified. The proportion of the mediation effect ranged between 10% and 25% mostly.

Comparison with univariate mediation analysis

The results of univariate mediation analysis for the signals detected from high-dimen-
sional mediation analysis are presented below, allowing for a comparison with the high-
dimensional mediation analysis results. Table 5 shows Average Causal Mediation Effect 
(ACME), which quantifies the proportion of the total effect of the exposure on the out-
come that is mediated through the mediator and the corresponding p-value for each 
signal.

Table 3 List of SNPs significantly associated with the SPARE-AD index. rsID is a unique identifier for a 
specific SNP. CHR refers to the chromosome on which the SNP is located, and BP stands for the base 
pair position of the SNP on the chromosome. REF represents the reference allele, and EA stands for 
effect allele. P-value indicates the statistical significance of the association between the SNP and the 
SPARE-AD index. Gene is the name of the gene in which the SNP is located

 rsID CHR: BP REF/EA P‑value Gene

rs75589364 chr6:33373881 A/G 1.33E-08 KIFC1

rs75086869 chr6:33397796 G/A 3.34E-08 OMIM

rs11042786 chr11:10432928 G/C 4.28E-08 AMPD3

rs67457110 chr11:10433888 C/T 4.75E-08 AMPD3

rs1376001 chr11:10452442 C/T 1.31E-09 AMPD3

rs11605232 chr11:10468501 T/C 4.33E-08 AMPD3

rs11604780 chr11:10468671 A/G 4.79E-08 AMPD3

rs11604833 chr11:10468906 A/G 3.82E-08 AMPD3

rs11604838 chr11:10468953 A/G 4.19E-08 AMPD3

rs7938316 chr11:10472064 C/T 4.87E-08 AMPD3

rs7949917 chr11:10475370 G/A 3.16E-10 AMPD3

rs7950039 chr11:10475467 G/A 3.28E-10 AMPD3

rs4909930 chr11:10475761 G/A 3.32E-10 AMPD3

rs4909931 chr11:10475772 G/T 3.65E-10 AMPD3

rs4909932 chr11:10475967 A/G 4.39E-10 AMPD3

rs899013 chr11:10476689 A/G 4.62E-10 AMPD3

rs7130140 chr11:10489826 A/C 1.77E-09 AMPD3

NA chr11:10498470 T/TAGCA 3.71E-10 AMPD3

rs4910143 chr11:10499103 A/G 2.26E-10 AMPD3

rs4910144 chr11:10501304 C/G 4.16E-10 AMPD3

rs10840425 chr11:10504640 A/C 1.75E-09 AMPD3

rs10770119 chr11:10506255 G/T 5.05E-09 AMPD3
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From Table 5, we could see that all of the 23 signals cannot be detected by univariate 
mediation analysis at 5% significance level (the p-value for each signal is greater than 
0.05).

Discussion
Our results demonstrate that the high-dimensional mediation method allows us to 
identify more signals than using univariate mediation analysis. This could be due to the 
consideration of the correlation between the potential mediators derived from complex 
data objects such as accelerometry data used in our analyses. Our findings are several 
folds. First, we have identified 3 genetic risk factors that have shown significant asso-
ciations with both risk of brain atrophy and levels of physical activity. It has been previ-
ously reported through a large-scale GWAS study that rs10770119 and rs7949917 are 

Table 4 Mediation effects identified from high-dimensional mediation analysis. We identified a total 
of 23 signals associated with 3 SNPs (rs10770119, rs4909932, rs7949917). We used PIP greater than 
zero as the criterion to select active mediators; the larger the PIP, the higher the likelihood that the 
mediator is active. Based on the estimate mediation effect provided by BAMA, we calculated the 
proportion of the mediation effect by dividing the estimated mediation effect by the total effect 
(the effect size from the GWAS between the SNP and the SPARE-AD index)

SNP mediator PIP Estimate 
mediation 
effect

Proportion

rs10770119 Mean of TLAC 0.011 6.83E-03 25.80%

Mean of TAC 0.001 2.39E-03 9.03%

Mean of TLAC 
(8pm-10pm)

0.001 5.03E-03 18.98%

Mean of MVPA 0.005 6.58E-03 24.85%

Mean of M10 0.0005 1.95E-03 7.36%

SD of TAC 0.002 6.04E-03 22.82%

SD of MVPA 0.0015 5.02E-03 18.95%

rs4909932 Mean of TAC 0.028 5.80E-03 22.00%

Mean of TLAC 0.002 2.81E-03 10.67%

Mean of TLAC 
(4pm-6pm)

0.0005 2.74E-03 10.42%

Mean of TLAC 
(6pm-8pm)

0.0035 4.52E-03 17.15%

Mean of TLAC 
(8pm-10pm)

0.001 4.54E-03 17.23%

Mean of MVPA 0.0435 6.96E-03 26.41%

SD of TAC 0.0045 5.17E-03 19.62%

SD of MVPA 0.004 4.74E-03 17.99%

rs7949917 Mean of TAC 0.028 5.80E-03 22.00%

Mean of TLAC 0.002 2.81E-03 10.67%

Mean of TLAC 
(4pm-6pm)

0.0005 2.74E-03 10.42%

Mean of TLAC 
(6pm-8pm)

0.0035 4.52E-03 17.15%

Mean of TLAC 
(8pm-10pm)

0.001 4.54E-03 17.23%

Mean of MVPA 0.0435 6.96E-03 26.41%

SD of TAC 0.0045 5.17E-03 19.62%

SD of MVPA 0.004 4.74E-03 17.99%
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associated with education, cognitive ability, intelligence, and numerical reasoning [59]. 
Moreover, rs4909932 and rs7949917 were found to be associated with higher white 
blood cell count and white matter microstructure [60]. Another study showed that a 
higher white blood cell count is linked to cognitive decline, which implies a higher AD 
risk [61], confirming our results. There was also a study indicating that white matter 
disease could be a risk factor for neuronal damage, leading to a higher risk of AD [62]. 
Our results align with the findings of previous studies, suggesting that these three SNPs 
could be risk genetic variants for AD. In the meantime, higher levels of physical activ-
ity have been shown to be associated with lower white blood cell count [63] and likely 
decrease the risk of white matter disease by maintaining the white matter microstruc-
ture and reducing AD risk [64]. Next, our results identified a positive mediation effect of 
physical activity patterns where having higher average physical activity intensity levels as 
quantified using total activity counts (TAC or TLAC), particularly during late afternoon 
and evening period (during 4pm-10pm), time spent in moderate-to-vigorous activity 
levels (MVPA) levels of physical activity could compensate part of the risk due to genetic 
variants. That is, these three SNPs might increase AD risk by decreasing physical activ-
ity levels. Although there are studies [28, 30, 32, 65] using mediation analysis to explore 
the relationships among genetic variants, imaging biomarkers, physical activity, and 
AD, no current study illustrates the mediation effect of physical activity on the pathway 
from genetic variants to AD-like brain atrophy index, making our study valuable and 
insightful. Future interventional studies could be designed with a focus on methods of 

Table 5 Average causal mediation effect (ACME), quantifying the average indirect effect

SNP Mediator ACME p‑value

rs10770119 Mean of TLAC −8.03E-05 0.422

Mean of TAC −9.78E-05 0.34

Mean of TLAC (8pm-10pm) −4.20E-05 0.646

Mean of MVPA −5.99E-05 0.57

Mean of M10 −8.24E-06 0.876

SD of TAC −1.11E-04 0.292

SD of MVPA −8.52E-05 0.466

rs4909932 Mean of TAC −1.04E-04 0.336

Mean of TLAC −9.21E-05 0.324

Mean of TLAC (4pm-6pm) −2.20E-05 0.754

Mean of TLAC (6pm-8pm) −2.91E-05 0.7

Mean of TLAC (8pm-10pm) −3.94E-05 0.644

Mean of MVPA −6.94E-05 0.534

SD of TAC −9.67E-05 0.28

SD of MVPA −8.18E-05 0.45

rs7949917 Mean of TAC −1.04E-04 0.308

Mean of TLAC −9.21E-05 0.352

Mean of TLAC (4pm-6pm) −2.20E-05 0.722

Mean of TLAC (6pm-8pm) −2.91E-05 0.716

Mean of TLAC (8pm-10pm) −3.94E-05 0.66

Mean of MVPA −6.94E-05 0.54

SD of TAC −9.67E-05 0.306

SD of MVPA −8.18E-05 0.442
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enhancing daily movement, increasing exercises above certain intensity levels (MVPA) 
and within certain time of the day (e.g. morning to early afternoon), and assess their 
potential effects on reducing AD risks.

This study has some limitations. Due to the limited number of features in the data-
set used and the difficulty in collecting many features, many covariates highly related 
to physical activity were not considered. For example, factors such as economic burden 
[66], built environment [67], crime rates [26], and occupation [68] could significantly 
influence physical activity levels. Not considering such covariates makes the patterns of 
physical activity we extracted less accurate, which in turn affects our results. Moreover, 
due to the scarcity of datasets collecting physical activity and the variation in instru-
ments used to collect physical activity data across different studies and even different 
stages within the same study, replication datasets are difficult to obtain. Since a signifi-
cant portion of the participants in UKBB are white British, the lack of replication may 
make our conclusions less applicable to other populations. Therefore, our study lacks 
validation from replication datasets, reducing the credibility of the results. In the future, 
we may utilize larger databases with more information to study the relationship among 
genetic variants, physical activity, and AD-like brain atrophy index. In terms of the anal-
ysis method, BAMA has several drawbacks, and the biggest problem is the assumptions 
of the model (linear assumption, independence assumption, temporal order assumption, 
etc.) may be too strong, making it difficult to achieve even with covariates controlled in 
real-world situations.

Conclusion
Through integrative analysis of multi-omics data, we have identified the mediation 
pathway of physical activity between genetic factors and AD risk. Overall, genetic 
factors can increase the brain atrophy measures connected to Alzheimer’s disease by 
reducing physical activity, which may help us better understand the mechanisms of 
AD cases and provide insights for reducing AD risk and slowing brain aging. Moreo-
ver, our research further demonstrates the potential of the high-dimensional media-
tion analysis method in revealing the mechanisms of disease.
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