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Introduction
The World Health Organization (WHO) defines physical activity (PA) as any bodily 
movement that expends energy. This encompasses various activities, from daily chores 
to recreational pursuits [1, 2]. Recognizing the crucial role of PA in maintaining health, 
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Abstract
Background  Analyzing free-living physical activity (PA) data presents challenges due 
to variability in daily routines and the lack of activity labels. Traditional approaches 
often rely on summary statistics, which may not capture the nuances of individual 
activity patterns. To address these limitations and advance our understanding of the 
relationship between PA patterns and health outcomes, we propose a novel motif 
clustering algorithm that identifies and characterizes specific PA patterns.

Methods  This paper proposes an elastic distance-based motif clustering algorithm for 
identifying specific PA patterns (motifs) in free-living PA data. The algorithm segments 
long-term PA curves into short-term segments and utilizes elastic shape analysis 
to measure the similarity between activity segments. This enables the discovery of 
recurring motifs through pattern clustering. Then, functional principal component 
analysis (FPCA) is then used to extract digital biomarkers from each motif. These digital 
biomarkers can subsequently be used to explore the relationship between PA and 
health outcomes of interest.

Results  We demonstrate the efficacy of our method through three real-world 
applications. Results show that digital biomarkers derived from these motifs effectively 
capture the association between PA patterns and disease outcomes, improving the 
accuracy of patient classification.

Conclusions  This study introduced a novel approach to analyzing free-living PA data 
by identifying and characterizing specific activity patterns (motifs). The derived digital 
biomarkers provide a more nuanced understanding of PA and its impact on health, 
with potential applications in personalized health assessment and disease detection, 
offering a promising future for healthcare.

Keywords  Digital biomarker, Activity pattern, Functional data analysis, Feature 
extraction, Clustering, Association, Wearable device data

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-025-00424-1&domain=pdf&date_stamp=2025-5-9


Page 2 of 16Liang and Wang BioData Mining            (2025) 18:8 

the WHO emphasizes the importance of regular exercise [1]. Growing research has 
investigated its impact on health-related issues, including its association with disease 
[3–5], its role in specific populations [6, 7], its influence on sleep [8, 9] and rest-activity 
rhythms [10, 11], and its significance in disease management [5] and prevention [5, 12].

As a result of advancements in technology and the development and popularization 
of wearable devices, many researchers have begun to collect real-world PA data through 
wearable devices and apply this data to biomedical and health-related research [13]. 
However, free-living PA data from wearable devices lacks activity-type labels. Conse-
quently, the data can only provide information on the overall intensity of an individu-
al’s daily activity levels but cannot accurately identify specific activity types. Hence, in 
biomedical and health-related research, researchers often calculate units of PA intensity 
(such as activity count, ENMO [14], signal vector magnitude (SVM) [15, 16], signal mag-
nitude area (SMA) [16], physical activity index [17], and Anglez [18]), and then derive 
summary statistics, such as time domain measures (e.g., mean, variance) and frequency 
domain measures (e.g., magnitude, dominant frequency), or other activity metrics (such 
as moderate-to-vigorous physical activity (MVPA) [19, 20]) over fixed time intervals 
(e.g., daily, weekly). These metrics, calculated either on the merged triaxial PA data or 
on each axis independently, are typically used as digital biomarkers and incorporated 
into models for analysis [15, 19–22]. Although sufficient for overall trends, such sum-
mary statistics are not designed to describe temporal patterns across time intervals that 
are relatively shorter than a day. Therefore, defining more informative digital biomarkers 
that could reveal these temporal details and represent daily specific PA patterns would 
enhance our understanding of the impact of particular activity behaviors on health (e.g., 
[23]). and improve the interpretability and applicability of research findings.

Cluster analysis is an exploratory data analysis technique that can uncover potential 
subgroups within data when there is no prior knowledge about the data or the underly-
ing clustering structure. Hence, we propose a clustering algorithm to identify PA pat-
terns in short fixed-time intervals and identify potential activity-type labels as digital 
biomarkers. This might resolve problems in data analysis and model building from inter-
individual differences and could define more informative digital biomarkers rather than 
overall summary statistics.

Recent research has employed functional data analysis (FDA) methods to analyze 
wearable device data [21, 24, 25]. FDA treats time series data as functions, capturing 
variations and addressing measurement errors through smoothing techniques [24, 26, 
27]. This approach can effectively address potential measurement errors associated with 
wearable device data while simultaneously capturing the time-varying trends of PA pat-
terns. Hence, we integrate the proposed clustering algorithm and FDA to explore the 
patterns of free-living PA. This method addresses measurement errors introduced dur-
ing data collection and incorporates temporal information. It also identifies effective dig-
ital biomarkers representing activity patterns to investigate the impact of activity pattern 
changes on health events.

As noted in Jacques et al.’s (2014) [28] comprehensive review of functional data clus-
tering methods, these techniques primarily aim to identify groups of curves with similar 
overall shapes or patterns. Given the substantial inter-individual differences/variability 
in terms of the types and durations of daily activities among individuals, identifying spe-
cific activity segments or patterns within whole-day activity curves can provide valuable 
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insights for uncovering unique activity phenomena. This information can potentially 
improve some clinical applications, enabling tailored interventions for promoting health 
and detecting early signs of disease.

Motifs, defined as recurring patterns within time series data, offer deep insights into 
the phenomena underlying the curves [29, 30]. In free-living PA data, motifs represent 
specific activity patterns, reflecting either common behaviors across individuals or 
recurrent activity patterns particular to an individual. These motifs offer valuable digi-
tal biomarkers, providing insights into population-level trends and individual-specific 
behaviors. By identifying motifs, researchers can better understand the relationship 
between PA and health, enabling the development of more effective health promotion 
strategies. Furthermore, research has shown that specific activity patterns like gait are 
linked to health outcomes like Alzheimer’s disease [23]. This finding underscores the 
potential for identifying motifs associated with specific health conditions, informing the 
development of targeted interventions and preventative strategies. Given these consid-
erations, our proposed clustering method explicitly targets identifying motifs in free-liv-
ing PA data. These motifs can then be leveraged to define digital biomarkers to analyze 
health-related events.

In summary, this study proposes an elastic distance-based motif clustering algorithm 
for identifying motifs in free-living PA data and then utilizing the functional principal 
component analysis to define digital biomarkers from each motif. Finally, association 
and classification models are constructed based on these digital biomarkers for advanc-
ing personalized health assessment and disease detection.

Methods
Elastic distance-based motif clustering and digital biomarker identification

Elastic shape analysis

Functional data typically exhibit two types of variation: phase variation and amplitude 
variation. Phase variation refers to the variability in the timing or temporal shift of simi-
lar waveforms, while amplitude variation refers to differences in the intensity of PA [31]. 
Distances used in traditional functional clustering methods, like Euclidean distance 
and dynamic time warping (DTW), primarily focus on comparing point-to-point curve 
amplitude, lacking the ability to effectively capture phase differences [32]. DTW mini-
mizes a penalized L2 norm, often resulting in suboptimal alignment [33]. Wasserstein 
distance, while providing a distribution-based measure, requires substantial data [34]. 
Elastic shape analysis employs a phase-amplitude separation procedure to register func-
tional data, enabling statistical analyses of the distinct phase and amplitude components 
[33, 35–38]. The elastic distance is a metric with both phase and amplitude variability 
[35, 38, 39]. Avoiding the pinching effect inherent in alignment [33], elastic distance is 
better suited for analyzing free-living PA curves where both phase and amplitude varia-
tions are significant.

Elastic shape analysis employs the square root velocity function (SRVF) framework for 
curve registration [35, 37, 38]. Let f : [0, 1] → Rn be a Euclidean curve. Srivastava et 
al. (2011) [37] established a mathematical expression representing a function f  using its 
SRVF and defined it as
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q (t) ≡
˙f (t)√∣∣∣ ˙f (t)

∣∣∣ � (1)

where ˙f (t) is the velocity vector at f (t). If we warped a function f  by γ : f → (f ◦ γ )
, the SRVF of (f ◦ γ ) is (q ◦ γ )

√
γ̇  according to the chain rule. Then, the distance 

between two functions can be defined as

d (f1, f2) = d (f1 ◦ γ , f2 ◦ γ ) = || (q1 ◦ γ )
√

γ̇ − (q2 ◦ γ )
√

γ̇ || = ||q1 − q2||� (2)

where || • || is the standard L2 norm [37]. Subsequently, the amplitude and phase dis-
tance between the two functions can be calculated as follows:

damp (f1, f2) = ||qf1◦ l − qf2◦ γ ||� (3)

,

[dphs(f1, f2) = cos−1
(∫ 1

0

√
l(̇t)

√
γ(̇t) dt

)
= cos−1

(∫ 1

0

√
1
√

γ(̇t) dt

)
= cos−1

(∫ 1

0

√
γ(̇t) dt

)
� (4)

where γ  is the warping function aligning f2 to f1 and l (t) = t [37, 38] (for more 
details, please refer to Srivastava and Klassen (2016) [38]). By computing the elastic dis-
tance, we can derive the phase and amplitude distance, enabling the measurement of the 
similarity between PA curves.

Motif clustering algorithm

PA data collected from wearable devices is typically multi-axial, resulting from measur-
ing and reporting signal information by accelerometers and gyroscopes. Existing func-
tional data clustering methods focus on analyzing unidimensional functions with limited 
attention to multidimensional functional data. Moreover, there is a dearth of literature 
proposing methods for clustering motifs. Consequently, this study proposes an elastic 
distance-based motif clustering approach tailored explicitly for multidimensional PA 
data. This method, employing elastic distance and the K-means clustering algorithm, 
allows for differential weighting of axes based on prior knowledge.

First, the long-term free-living PA curves are split into shorter time windows for anal-
ysis, such as 30-minute or 1-hour intervals. Let xij (t) be the jth curve for the ith indi-
vidual. The steps involved in the elastic distance-based motif clustering algorithm are as 
follows:

1.	 Partition long-term free-living PA curves into shorter-term activity epochs
2.	 Choose the number of clusters ( K) and randomly assign each cluster’s centered 

function c(1) (t) , c(2) (t) , . . . , c(K) (t).
3.	 Calculate the elastic distance between each functional curve and each cluster center. 

Since the elastic distance contains phase and amplitude distance, we assign weights for 
these two distances to represent their importance in different application scenarios. 
The metric for one-axis PA data is displayed by the following formula:

	delastic

(
xij (t) , c(k) (t)

)
= wp × dphs

(
xij (t) , c(k) (t)

)
+ wa × damp

(
xij (t) , c(k) (t)

)
� (5)
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	 where damp

(
xij (t) , c(k) (t)

)
= ||qc(k)(t)◦ l − qxij(t)◦ γ ||, 

dphs(xij(t), c(k)(t)
)

= cos−1
(∫ 1

0

√
γ(̇t)dt

)
, and wp + wa = 1. This formula can 

be extended to multi-axis PA data ( h = 1,2 . . . , H):

	delastic(xij (t) , c(k)(t )) =
∑

h

{
wp,h × dphs(xijh (t) , c

(k)
h (t )) + wa,h × damp(xijh (t) , c

(k)
h (t ))

}
� (6)

	 where 
∑

h (wp,h + wa,h) = 1.
4.	 Assign each function curve to the cluster with the shortest elastic distance

	
Lij = arg min

k
delastic� (7)

	 where Lij  is the label for xij (t) .

5.	 Recalculate the centered function for each cluster with

	
c(k) (t) = 1

|Sk|
∑

xij(t)∈ Sk
xij (t)� (8)

	 Sk : the set of activity function assigned to the cluster k,
	 |Sk| : the number of activity function in the cluster k.

6.	 Repeat steps 3 to 5 until the stopping criteria are met. We can then obtain the 
clustering label for each functional curve.

Identification of digital biomarkers through motif clustering

Considering each person has multiple recording days (d = 1, . . . , D), we can calculate 
the mean activity functions A

(k)
id (t) for the ith individual on the dth day within the k

th cluster to summarize people’s activity patterns. If there are no activity segments for 
a specific cluster on a given day, the activity mean function for that cluster would be 0. 
Then we can utilize these mean functions within each cluster to guide further analysis. 
Letting

A
(k)
id =




1∣∣S
(k)
id

∣∣
∑

xij(t)∈ S
(k)
id

x
(k)
ij (t)

0 , if
∣∣∣S(k)

id

∣∣∣ = 0
� (9)

where S
(k)
id  is the set of activity functions assigned to the cluster k for the ith individual 

on the dth day and 
∣∣∣S(k)

id

∣∣∣ is the number of activity function in the cluster k for the ith 

individual on the dth day.
Once the mean function of each person within each cluster is determined, the cluster-

based digital biomarkers can be considered as features and used in statistical analysis. To 
investigate the dynamics of variable distributions, we adapt functional principal compo-
nent analysis (FPCA) to describe activity patterns. The objective of FPCA is to identify a 
set of orthogonal components that can adequately explain the variance of observations 
with the fewest possible features [27].

Using the Karhunen–Loève decomposition, the mean activity function A
(k)
id (t) can be 

represented in the following model:
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A
(k)
id (t) = µ (k) (t) +

∑
∞
p=1ξ

(k)
idpφ (k)

p (t)� (10)

where µ (k) (t) is the mean function of the kth cluster and ξ
(k)
idp is the pth functional 

principal component (FPC) score of the ith individual on the dth day within the kth 
cluster, associated with the eigenfunction φ

(k)
p (t) for all p ≥ 1. We truncate the FPCs 

to a finite vector for dimension reduction, which results in the information in A
(k)
id (t) 

being represented by a P -dimensional vector Ξ (k)
id =

(
ξ

(k)
id1, . . . ., ξ

(k)
idP

)
, where P  is 

the number of retained principal components. Then, the mean activity function A
(k)
id (t) 

can be expressed in the following form:

A
(k)
id (t) = µ (k) (t) +

∑
P
p=1ξ

(k)
idpφ (k)

p (t)� (11)

We then investigate whether each person’s FPC score on each day, representing the sub-
ject-specific pattern in each cluster, can serve as a critical digital biomarker to explore 
the relationship between PA and health-related outcomes.

Applying digital biomarkers in association studies or classification problems

Application in association studies

Given the substantial daily variation observed among individuals, each day’s data is 
treated independently in model building. The association model can be expressed as 
follows:

g (E(Y i)) = β 0 +
∑

K
k=1

∑
P
p=1β (k)

p ξ
(k)
idp + Ziα

T � (12)

where Yi is the health outcome for the ith individual, ξ
(k)
idp is the ith individual’s pth 

FPC score on the dth day within the kth cluster, Zi is the ith individual’s covariates 
such as gender, age, etc., and g (• ) is a link function. If one considers the correlation 
between data collected on different days for an individual and treats it as repeated mea-
sures data, a generalized linear mixed effects model can be employed for analysis.

Application in classification problems

Another application of these cluster-based digital biomarkers is classification with 
machine learning methods. Machine learning models can be developed by using the 
defined digital biomarkers, ξ

(k)
idp, and covariates, Zi, as features to perform classifica-

tion tasks and make predictions about health outcomes.

Three application studies

NHANES surveys in 2011–2012

The first study utilized data from the 2011–2012 National Health and Nutrition Exami-
nation Survey (NHANES), which is representative of the civilian, non-institution-
alized population of the United States [40]. PA was measured using the ActiGraph 
GT3X + device, capable of recording acceleration at an 80  Hz sampling rate. The raw 
data were aggregated to the minute level by calculating the median of all points within 
each minute. Each participant had up to 194 h of accelerometer data collected.
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A total of 552 children aged 6 to 12 years with triaxial accelerometer data were selected 
for analysis, including 276 children with normal weight and 276 with obesity. For the 
preprocessing of PA data, only days with complete 24-hour data were considered. After 
preprocessing, 3,827 days of data were analyzed, with 1,914 days from children with obe-
sity and 1,913 days from normal-weight children.

Depresjon Study

The second study, the Depresjon study, assessed participants mental health using the 
Montgomery-Asberg Depression Rating Scale (MADRS) [41]. Of the 55 participants, 
23 exhibited severe depression (MADRS score > 30), while 32 served as a control group 
without depressive symptoms. The activity count value was derived from raw accelera-
tion per minute data recorded by the Actiwatch at 32 Hz. Rigorous data quality control 
eliminated invalid records. As a result of the data preprocessing, 739 days were included 
in the analysis, consisting of 306 days from depressed patients with unipolar or bipolar 
and 433 days from controls. Each day contained 1,440 activity counts, each representing 
a one-minute total activity count ranging from 0 to 3,000. The collected activity counts 
were divided by 1,000 to ensure manageable amplitude values.

PSYKOSE Study

The third study, the PSYKOSE study, involved 22 participants with schizophrenia and a 
control group of 32 healthy participants [42]. Similar to the Depresjon study, the Acti-
watch was used to record daily activity, and the same data pre-processing was applied 
to ensure data quality. After data preprocessing, 729 days were included in the analysis, 
consisting of 296 days for patients with schizophrenia and 433 days for controls.

Logistic Regression for Association Investigation

The association model for the Depresjon and PSYKOSE studies can be expressed as 
follows

logit (E (Yi)) = β 0 +
∑

K
k=1

∑
P
p=1β (k)

p ξ
(k)
idp + Genderi + Agei� (13)

where Yi = 1 if the ith individual is a patient (diagnosed with depression in Depresjon 
study and schizophrenia in the PSYKOSE study) and 0 otherwise, Genderi = 1 for male 
and 0 for female, Agei = 1 if the individual is aged between 40 and 69.

Competing classification models

Five classifiers (Naive Bayes, SVM, logistic regression with lasso penalty, decision tree, 
and random forest) were constructed, and the performance was evaluated by accuracy, 
sensitivity, and specificity. To account for the inter-individual variability and uncertain 
disease onset, a leave-one-subject-out cross-validation combined with majority voting 
was employed. Each subject was taken in turn as the testing data while the remaining 
subjects formed the training data set. Since each individual had data for multiple days, 
daily predictions were made for each subject, and majority voting across these daily pre-
dictions determined the final decision. For instance, if a person has five days of data, the 
classification model will generate five predictions. If the person is predicted to be a case 
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for three out of five days, the final prediction will be that the person is a case. The feature 
set for all classifiers was identical to that used in the association model.

Results
Application 1: The NHANES study

Constructing and investigating Digital biomarkers

Our proposed elastic distance-based motif clustering method was applied to discover 
activity patterns and to construct digital biomarkers for three real-world applica-
tions. We evaluated the impact of different time window sizes (15 and 30 min). For the 
NHANES study, a 15-minute window is optimal for analyzing children’s activity pat-
terns. This may be due to children’s shorter attention spans and engagement in more 
frequent short-duration activities. When examining longer time windows, we observed 
that many motifs could be composed of several 15-minute motifs (Supplementary Figure 
S5, Figure S6, Figure S7). Consequently, our primary analysis emphasizes a 15-minute 
window, with results from other window sizes detailed in the supplementary material.

The elastic distance-based motif clustering method identified distinct activity patterns 
(motifs) from the triaxial accelerometer data, resulting in six motifs for each axis. Subse-
quently, 18 digital biomarkers were derived from the three axes. Figure 1 illustrates the 
clustering outcomes, displaying the mean activity function for each aligned three-axis 
function. It highlights the differences in activity patterns across the three axes, demon-
strating the effectiveness of the elastic distance-based motif clustering algorithm in han-
dling multi-axis data and uncovering meaningful patterns.

To explore the relationship between diverse activity patterns and children’s daily rou-
tines, we partitioned the 24-hour day into four 6-hour time intervals. We computed the 
frequency distribution of specific activity functions across these time intervals within 
each cluster for each group. The results are shown in Fig. 2 and Supplementary Table 
S1. Motif 6 shows a consistently low level of activity (Fig. 2), suggesting it may represent 
sleep or sedentary behavior. This interpretation is supported by a temporal distribution 
wherein approximately 45% of the associated curves are localized within the nocturnal 

Fig. 1  Visualization of the mean activity function ( 1
n

∑
n
i=1

1
D

∑
dA

(k)
id

(t)) for each cluster representing dif-
ferent motifs identified by the elastic distance-based motif clustering algorithm in the NHANES study. The mean 
activity function of the triaxial accelerometer is presented in (A) the X-axis, (B) the Y-axis, (C) the Z-axis, and (D) the 

combined magnitude of activity, calculated as 
√

x (t)2 + y (t)2 + z(t)2
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period of 00:00 and 05:59. The frequency of Motif 4 (in Fig. 2) remained relatively con-
sistent across all four time intervals, suggesting it may represent a time-independent 
activity pattern with limited behavioral specificity.

Application 2 and 3: Two mental health studies

Constructing and investigating digital biomarkers

For the Depresjon and PSYKOSE datasets, a 30-minute window is more suitable for cap-
turing patients’ activity patterns. Consequently, our primary analysis emphasizes these 
specific time windows, with results from other window sizes detailed in the supplemen-
tary material. In addition, we determined the optimal number of clusters ( k) based on 
the within-cluster variation to between-cluster variation ratio, Silhouette width, and the 
classification performance of the resulting digital biomarkers. The elastic distance-based 
motif clustering algorithm assigned cluster labels to activity functions within the entire 
dataset, resulting in the derived digital biomarkers.

The Depresjon study yielded six motifs (clusters) and 12 digital biomarkers, while the 
PSYKOSE study identified four motifs and eight digital biomarkers. Figure 3 illustrates 
the clustering results, presenting the mean activity function for each individual within 
their respective clusters. While activity patterns within each cluster are similar, distinct 
patterns emerge across different clusters. The activity count patterns vary among motifs. 
Some motifs (Motifs 2 in Fig. 3A; Motifs 3 in Fig. 3B) exhibit relatively stable activity 
counts, whereas other motifs (Motifs 1, 3, 4, and 5 in Fig. 3A; Motifs 1 and 2 in Fig. 3B) 
demonstrate significant fluctuations. On average, the activity counts of the control group 
were higher than those of the case group, suggesting that the control group had a more 
active lifestyle during the study period.

We explored the relationship between diverse activity patterns and individuals’ daily 
routines. We partitioned the 24-hour day into four time intervals and computed the fre-
quency distribution of specific activity functions across these time intervals within each 
cluster for each group. This allows us to identify the activity patterns most commonly 
observed in particular time intervals for each group. The results are shown in Fig.  4, 
Table S2, and Table S6. The low-activity motifs, such as Motif 2 (Fig. 4A) and Motif 3 

Fig. 2  Visualization of mean activity functions across four time intervals representing different motifs obtained by 
the elastic distance-based motif clustering algorithm in NHANES. The mean activity functions of the triaxial accel-
erometer are presented in (A) the X-axis, (B) the Y-axis, (C) the Z-axis, and (D) the combined magnitude of activity, 

calculated as 
√

x (t)2 + y (t)2 + z(t)2
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(Fig. 4B), exhibit a temporal distribution strongly associated with sleep, with nearly half 
of the associated curves occurring between midnight and 5:59 AM. In contrast to activ-
ity patterns with lower activity counts, those with higher activity counts are predomi-
nantly observed within diurnal periods and the pre-sleep phase (over 85%). Additionally, 
we examined the associations between demographic variables (age and gender) and 
various activity patterns. No significant differences were observed across these motifs. 
Detailed results are presented in Supplementary Figure S9, Figure S10, Table S2, and 
Table S6.

We further examined disease-specific patterns within each motif. Controls exhibited 
higher overall activity levels (Fig.  3), particularly among younger individuals (Supple-
mentary Figure S9, Table S5, and Table S9). This discrepancy might be attributed to 
the relatively homogeneous nature of the hospitalized case group. Furthermore, while 
females in the control group exhibited higher activity levels than males, no signifi-
cant gender differences were observed in the case group of the Depresjon study. Con-
versely, females in the case group of the PSYKOSE study displayed lower activity levels 
(Supplementary Figure S10, Table S4, and Table S8). When examining temporal dis-
tribution (Fig. 4, Supplementary Table S3, and Table S7), healthy individuals exhibited 
more regular diurnal rhythms. Low-activity motifs (Motif 2 for Depresjon and Motif 
3 for PSYKOSE) predominantly occurred between midnight and 5:59 AM, and motifs 
with higher activity counts were more frequent during diurnal periods and the pre-
sleep phase. In contrast, patients showed disrupted circadian rhythms, with increased 

Fig. 3  Visualization of mean activity functions ( 1
D

∑
dA

(k)
id

(t)) for each individual representing different motifs 
obtained by the elastic distance-based motif clustering algorithm in (A) Depresjon study and (B) PSYKOSE study
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nighttime and reduced daytime activity. This was particularly evident in the depression 
group.

Association studies for the two mental health studies

Functional Principal Component Analysis was applied to each motif to reduce dimen-
sionality and extract meaningful features, resulting in digital biomarkers. Since the top 
two FPCs in both studies explained approximately 80% of the variation across all motifs, 
these were selected as representative features. Their corresponding FPC scores were 
then used to construct regression models. As shown in Supplementary Figures S11A 
and S12A, the first eigenfunctions of all motifs exhibit variations in activity intensity. 
Moreover, the second eigenfunctions demonstrate phase shift.

To identify influential activity patterns between the two groups, logistic regression 
with lasso penalty was employed to select significant digital biomarkers. The results 
are presented in Table 1. In the Depresjon study, FPC 1 in Motif 1, 5, and 6 exhibited 
a significant effect between the two groups; that is, these three activity patterns were 
associated with depression. In the PSYKOSE study, gender was excluded because the 
observations were perfectly separated by gender, and the logistic regression estimation 
algorithm did not converge. The model for the PSYKOSE study was established without 
considering gender. FPC 1 in Motif 1, 2, and 4 and FPC 2 in Motif 4 demonstrated a sig-
nificant effect between the two groups; that is, these three activity patterns were associ-
ated with schizophrenia.

Fig. 4  Visualization of mean activity functions for different groups across the four time intervals representing 
different motifs obtained by the elastic distance-based motif clustering algorithm in (A) Depresjon study and (B) 
PSYKOSE study
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Classification models for the two mental health studies

Table 2 presents the performance of five classification models. To establish a baseline for 
comparison, a classifier was created using only demographic information (age and gen-
der) to assess the model’s basic ability to distinguish between case and control groups. 
The classification model incorporating digital biomarkers consistently outperformed the 
baseline model in the two studies. Incorporating digital biomarkers increased sensitivity 
in both studies, with a 0.35 increase in the Depresjon study and a 0.32 increase in the 
PSYKOSE study for naïve Bayes. This indicates that digital biomarkers are effective in 
discriminating the case group. Moreover, in the PSYKOSE study, the digital biomarkers 
improved specificity, aiding in the detection of the control group; however, their impact 
on identifying healthy individuals in the Depresjon study was less pronounced.

Discussion
This study proposed an elastic distance-based motif clustering algorithm for identifying 
motifs in free-living PA data and then utilizing the FPCA to define digital biomarkers 
from each motif. The results of this research underscore the effectiveness of grouping 
similar activity patterns, thereby facilitating the acquisition of digital biomarkers for sub-
sequent analysis. The proposed method is not only effective but also offers a novel per-
spective for managing free-living data, instilling confidence in its potential.

The results of the NHANES study indicated the feasibility of using the clustering algo-
rithm for three-axis data. In Depresjon and PSYKOSE study, each motif suggests that 
individuals with mental health issues exhibit lower levels of daily PA, corroborating find-
ings from previous studies. The clustering approach provides a more meaningful under-
standing of the data, revealing that patients who exhibit specific activity patterns with 
more intensity tend to be associated with lower disease risk.

The sensitivity of k-means clustering algorithms to initial values is a well-documented 
challenge. To address this, our proposed method adopts a straightforward approach by 
randomly choosing K  activity segments from the original dataset as initial cluster cen-
ters. This simple yet effective strategy provides a flexible starting point, especially when 
domain-specific knowledge is limited. Nonetheless, the method allows for customiza-
tion, enabling researchers to incorporate prior knowledge or other preferred choices to 
refine the initial cluster centers.

Table 1  Multiple regression models for mental health (effect estimates and 95% confidence 
intervals) in the two application studies
Variable Odd ratio P-value
Depresjon study
Motif 1 FPC 1 0.68 (0.54, 0.86) 0.002
Motif 5 FPC 1 0.68 (0.54, 0.86) 0.001
Motif 6 FPC 1 0.5 (0.35, 0.72) < 0.001
Age (40–69) 1.72 (1.23, 2.40) 0.001
Gender (Male) 1.76 (1.27, 2.46) 0.001
PSYKOSE study
Motif 1 FPC 1 0.35 (0.24, 0.51) < 0.001
Motif 2 FPC 1 0.46 (0.31, 0.69) < 0.001
Motif 4 FPC 1 0.47 (0.29, 0.77) 0.002
Motif 4 FPC 2 12.53 (3.58, 43.85) < 0.001
Age (40–69) 1.97 (1.35, 2.9) 0.001
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Prior research on triaxial accelerometer data has commonly assumed independence 
among the axes, as highlighted by Mizell [43]. Following this common practice, our 
study also independently treats data from each axis. Each axis’s data undergoes SRVF 
transformation, and distances are calculated separately before being simply summed to 
obtain a combined multi-axis distance for subsequent analysis. While it is possible to 
consider the correlation between multiple axes by performing SRVF transformation on 
the entire multi-axis data simultaneously, as detailed in Srivastava et al. [44] and Kurtek 
et al. [45], this approach was not adopted in our study. Future research could explore 
the impact of this assumption on the analysis results. Furthermore, treating each axis 
as independent offers the flexibility to assign weights to different axes when analyzing 
specific activities or states. By assigning a higher weight to the axis which is most rep-
resentative of the activity, we can tailor the distance calculation to better capture the 

Table 2  Performance of classification model for mental health in the two application studies
Accuracy Sensitivity Specificity

Depresjon study
  Baseline model (age, gender)
    Naïve Bayes 0.64 0.35 0.84
    SVM 0.64 0.35 0.84
    Logistic regression (Lasso) 0.64 0.35 0.84
    Decision Tree 0.64 0.35 0.84
    Random forests 0.62 0.30 0.84
  12 digital biomarkers (6 motifs, 2 FPCs per motif) + no demographics
    Naïve Bayes 0.67 0.70 0.66
    SVM 0.67 0.39 0.88
    Logistic regression (Lasso) 0.67 0.52 0.78
    Decision Tree 0.62 0.26 0.88
    Random forests 0.71 0.43 0.91
  12 digital biomarkers (6 motifs, 2 FPC per motif) + demographics
    Naïve Bayes 0.62 0.65 0.59
    SVM 0.73 0.48 0.91
    Logistic regression (Lasso) 0.62 0.48 0.72
    Decision Tree 0.62 0.26 0.88
    Random forests 0.75 0.52 0.91
PSYKOSEstudy
  Baseline model (age, gender)
    Naïve Bayes 0.72 0.59 0.81
    SVM 0.61 0.59 0.62
    Logistic regression (Lasso) 0.61 0.59 0.62
    Decision Tree 0.61 0.59 0.62
    Random forests 0.65 0.59 0.69
  8 digital biomarkers (4 motifs, 2 FPCs per motif) + no demographics
    Naïve Bayes 0.83 0.91 0.78
    SVM 0.85 0.77 0.91
    Logistic regression (Lasso) 0.83 0.82 0.84
    Decision Tree 0.83 0.64 0.97
    Random forests 0.87 0.82 0.91
  8 digital biomarkers (4 motifs, 2 FPCs per motif) + demographics
    Naïve Bayes 0.85 0.91 0.81
    SVM 0.81 0.68 0.91
    Logistic regression (Lasso) 0.83 0.77 0.88
    Decision Tree 0.80 0.64 0.91
    Random forests 0.85 0.73 0.94
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nuances of different activity patterns. This flexibility allows us to account for the varying 
significance of different axes in other research questions or datasets.

This study’s simplistic approach to time window segmentation is a limitation of this 
study. However, the potential impact of a more sophisticated method on the accuracy 
of the study is significant. While we experimented with a fixed-length window based on 
the approximate duration of daily activities, a more sophisticated method that accounts 
for overlapping segments could significantly enhance the accuracy of capturing the 
dynamics of human behavior, especially considering more complex and nuanced activity 
patterns.

Another limitation of this study is that the digital biomarkers defined based on the 
motifs identified by the proposed algorithm require further research to understand the 
connection between each motif and the actual activities. Given that cluster analysis is an 
exploratory data analysis method, further investigation is necessary to delve deeper into 
the meaning of each cluster after obtaining the clustering results. Similarly, the activ-
ity patterns identified from free-living activity data using the proposed algorithm need 
additional research to understand the types of activities they represent, enabling their 
integration with clinical questions and providing greater clinical significance and value 
in addressing clinical problems.

In summary, the motif clustering method is valuable for labeling free-living activity 
patterns. The clustering-based digital biomarkers, within the framework developed in 
this study, offer a novel perspective on the relationship between specific PA patterns 
and health outcomes. Beyond one-dimensional activity count functions, this framework 
is adaptable to a wide range of multivariate functional data, reassuring its applicabil-
ity. By applying this method, the resulting digital biomarkers hold significant promise 
for advancing personalized health assessment and disease detection, shaping a positive 
future for healthcare.
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