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Abstract 

Background: Understanding the molecular properties of chemical compounds 
is essential for identifying potential candidates or ensuring safety in drug discovery. 
However, exploring the vast chemical space is time-consuming and costly, neces-
sitating the development of time-efficient and cost-effective computational meth-
ods. Recent advances in deep learning approaches have offered deeper insights 
into molecular structures. Leveraging this progress, we developed a novel multi-view 
learning model.

Results: We introduce a graph-integrated model that captures both local and global 
structural features of chemical compounds. In our model, graph attention layers are 
employed to effectively capture essential local structures by jointly considering atom 
and bond features, while multi-head attention layers extract important global features. 
We evaluated our model on nine MoleculeNet datasets, encompassing both classifica-
tion and regression tasks, and compared its performance with state-of-the-art meth-
ods. Our model achieved an average area under the receiver operating characteristic 
(AUROC) of 0.822 and a root mean squared error (RMSE) of 1.133, representing a 3% 
improvement in AUROC and a 7% improvement in RMSE over state-of-the-art models 
in extensive seed testing.

Conclusion: MultiChem highlights the importance of integrating both local 
and global structural information in predicting molecular properties, while also assess-
ing the stability of the models across multiple datasets using various random seed 
values.

Implementation: The codes are available at https:// github. com/ DMnBI/ Multi Chem.

Introduction
Accurate characterization of the molecular properties of chemical compounds is cru-
cial for identifying lead candidates and evaluating cellular and tissue-level interactions in 
drug development. With over 100 million molecules available, experimentally screening 
desirable compounds within this vast chemical space is challenging, time-consuming, 
and costly. In this context, in silico evaluation provides a more efficient alternative, con-
tingent on the development of accurate predictive models.

In recent years, machine learning methods have become widely adopted in drug 
discovery and molecular property prediction [43, 66]. These methods, grounded in 

*Correspondence:   
minarho@hanyang.ac.kr

1 Department of Computer 
Science, Hanyang University, 
Seoul, Republic of Korea
2 Department of Artificial 
Intelligence, Seoul, Republic 
of Korea
3 Department of Biomedical 
Informatics, Hanyang University, 
Seoul, Republic of Korea

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-024-00419-4&domain=pdf
https://github.com/DMnBI/MultiChem


Page 2 of 21Moon and Rho  BioData Mining            (2025) 18:4 

quantitative structure–activity relationship (QSAR) principles, predict molecular activ-
ity based on structural similarities by carefully selecting relevant variables and inference 
functions [21]. Traditional machine learning models, such as support vector machine [7] 
and random forests [2], have demonstrated strong performance in estimating relation-
ships between molecular structures and their properties.

In QSAR modeling, molecular fingerprints have become a standard for representing 
molecular structures [43, 66]. These fingerprints capture features such as electronic, 
geometric, and steric properties. Commonly used fingerprints, like PubChem finger-
print [30], MACCS Key [8], and extended-connectivity fingerprints (ECFP) [49], can be 
generated efficiently using tools like PaDel [65], RDKit [32], and CDK [53]. However, 
these approaches depend on predefined substructures, which may overlook other rel-
evant molecular features [26], highlighting the need for more comprehensive molecular 
representations.

Deep learning has recently gained prominence across various fields due to its abil-
ity to automatically extract features without manual intervention [13]. In drug discov-
ery, graph-based and sequence-based neural networks have shown particular promise 
by capturing a broader range of substructures than traditional fingerprints [27, 28, 37, 
40, 44, 45, 56, 59, 67, 70]. Graph-based models are adept at distinguishing locally posi-
tioned substructures, while sequence-based models capture global patterns from distant 
substructures.

Several graph neural networks (GNNs) have been introduced for molecular property 
prediction, including graph convolutional network (GCN) [31], message-passing neural 
network (MPNN) [19], and graph attention network (GAT) [3, 57]. These models focus 
on individual nodes within molecular graphs to accurately capture local structural fea-
tures. Studies have shown that GCNs and MPNNs perform comparably to traditional 
machine learning approaches [6, 9, 19, 29, 31, 39, 51, 55]. GATs and their variants, incor-
porating attention mechanisms, have shown better performance by assigning varying 
influence probabilities within the graph structure [34, 62, 68].

Building on the success of atom-centered GNNs, several variant models have been 
developed to enhance prediction accuracy [15, 36, 38,  54, 64, 69]. Among these, the 
directional message-passing neural network (DMPNN) [63] is notable for its focus on 
bond information, treating atoms and bonds are equally important to better differentiate 
non-isomorphic structures. Unlike atom-centered GNNs, the bond-centered DMPNN 
utilizes a line graph where the atoms and bonds are assigned to edges and nodes, respec-
tively [18,  60, 63]. Inspired by the success of both atom- and bond-centered GNNs, 
several studies have attempted to combine atom and bond representations in a single 
framework [5, 15, 40, 52, 59]. In these studies, either a bond-centered GNN was added 
to an atom-centered GNN, or both GNNs were used together to exchange information. 
However, these approaches perform simple summation or averaging to represent atoms 
and bonds rather than employing more sophisticated attention, potentially limiting their 
effectiveness.

Sequence-based models have also been employed in molecular property prediction [20, 
25, 50, 58]. These models primarily use SMILES sequences to represent molecular struc-
tures, enabling them to extract global structural features from entire sequences. Notably, 
BERT has been adapted for molecular property prediction using fully connected graph 
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approaches [58]. Similar to GNNs, sequence-based models often outperform traditional 
methods.

Data scarcity is a common challenge in molecular property prediction, leading to adop-
tion of multi-task learning and transfer learning to address this issue. Multi-task learning 
improves performance by sharing information across related tasks [43, 61]. Transfer learn-
ing, widely used in both graph- and sequence-based models, enables the leveraging of 
knowledge from larger datasets to enhance predictive accuracy on smaller datasets [16, 35, 
50, 58].

In this work, we developed a model that generates a comprehensive molecular represen-
tation by simultaneously capturing local and global structural information. Our approach 
incorporates two graph encoders to effectively capture local information from atoms and 
bonds. These local features are jointly aggregated using a graph attention mechanism, 
which represents a key contribution of our study. Unlike traditional aggregation methods 
[34, 57, 62], our mechanism more effectively captures structural information from atoms 
and bonds, making it particularly well-suited for molecular property prediction. To com-
plement the local features, we applied a multi-head attention mechanism to capture global 
relationships between distant substructures across diverse molecular topologies. By directly 
applying multi-head attention to the local features from our graph encoders, our model 
emphasizes both substructural relationships while simultaneously extracting global rela-
tionships. This multi-view approach integrates local and global information, enabling a 
more refined representation of molecular structures. When we assessed the impact of indi-
vidual components within our model, we observed AUROC improvements ranging from 
1.0% to 5.1% when comparing the model to the other models lacking specific components. 
In addition, the final model with ensemble method showed a 2.3% increase in AUROC 
score.

In our experiments, several models showed substantial performance differences between 
the different datasets. These inconsistencies may be due to structural differences in the 
scaffold distributions of the datasets, suggesting that each model focused on different 
molecular regions during training. To address the challenges of data scarcity and imbal-
ance, we also incorporated an ensemble method, which has also shown promising results in 
the biological fields [12, 14]. Ensemble methods reduce variance and bias, mitigating risks 
of overfitting. In particular, bagging in our method promotes model diversity by training on 
data subsets with varied distributions, improving generalization and stability by reducing 
variance across individual models.

We evaluated our method on nine benchmark datasets from the MoleculeNet, includ-
ing both classification and regression tasks. Compared to state-of-the-art methods [16, 34, 
35, 40, 50] on golden standard datasets, our model achieved better or comparable perfor-
mances, with an average area under the receiver operating characteristic (AUROC) of 0.822 
and a root mean squared error (RMSE) of 1.133, reflecting improvements of 3% in AUROC 
and 7% in RMSE over current leading methods.

Materials and methods
Datasets

We used classification and regression datasets from MoleculeNet [61] using the Deep-
Chem [47] library. The classification datasets include six tasks of BBBP [42], Tox21 [23], 
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ToxCast [48], SIDER [47], ClinTox [61], and BACE. The regression datasets include three 
tasks of ESOL, FreeSolv, and Lipophilicity regarding physical chemistry.

The BBBP dataset provides information on molecular penetration of the blood–brain 
barrier [42]. Tox21 includes qualitative screening data for nuclear receptor (NR) and 
stress response (SR) assays [23]. ToxCast comprises extensive in vitro high-throughput 
screening data [48]. SIDER contains adverse drug reaction data classified by MedDRA 
[47], and ClinTox includes FDA-approved drugs alongside those failed due to toxicity 
issues [61]. The BACE dataset provides biophysical properties related to binding for 
inhibitors of human beta-secretase 1 (BACE-1). The ESOL dataset contains 1,128 com-
pounds with water solubility. FreeSolv provides compounds with experimental hydra-
tion-free energy in water. The Lipophilicity dataset contains experimental octanol/water 
distribution coefficient values. In classification tasks, each task classifies compounds as 
active, inactive, and inconclusive. For this study, we focus exclusively on the active and 
inactive outcomes to maintain accuracy and reliability. Detailed configurations of each 
dataset are provided in Table 1.

Feature initialization

Our model utilizes two graph forms: atom graph and bond graph (Fig. 1A), designed for 
the atom-centered and bond-centered sub-models, respectively. The atom graph repre-
sents atoms as nodes and bonds as edges, with the adjacency matrix indicating the bond 
presence. The bond graph assigns bonds as nodes and atoms as edges, with the adja-
cency matrix indicating direct connections between two bonds via an atom. This dual-
input approach ensures our model equally considers both atoms and bonds.

To initialize features, we represented the molecule with three matrices (node vectors, 
edge vectors, and adjacency matrix), a common method in deep learning for drug dis-
covery [63]. Node vectors are based on atomic properties such as atom type, the number 
of bonds, and mass. Edge vectors include bond properties like bond type, ring presence, 
and conjugation. Properties are transformed into feature vectors using one-hot encoding 
or scaling, resulting in a node vector of length 127 and an edge vector of length 12. For 
example, atom type and mass are converted to a vector of length 100 by one-hot encod-
ing and a vector of length one by scaling, respectively. Bond type is transformed into a 
vector of length four by one-hot encoding. Feature configurations are detailed in Table 2, 
with properties extracted from the SMILES string using RDKit [32].

Table 1 Details of the datasets

Dataset #Tasks #Compounds #Actives #Inactives #Atoms #Bonds

BBBP 1 2039 1560 479 49,068 52,921

Tox21 12 7831 5862 72,084 145,459 151,095

ToxCast 617 8576 126,651 1,407,009 161,088 165,178

SIDER 27 1427 21,868 16,661 48,006 50,456

ClinTox 2 1478 1496 1460 38,661 41,209

BACE 1 1513 691 822 51,577 55,768

FreeSolv 1 642 - - 5600 5385

ESOL 1 1128 - - 14,991 15,428

Lipo 1 4200 - - 113,568 123,899
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Model construction

In the MultiChem model, we incorporate three key components: a graph attention 
mechanism to integrate atom and bond information, a multi-head attention mecha-
nism to capture both local and global features, and an ensemble method to enhance 

Fig. 1 MultiChem: a practical tool for molecular property prediction. A Inputs. We employed two molecular 
graphs for our model. One is the Atom graph, which assigns atoms and bonds as nodes and edges. The other 
is the Bond graph, which allocates bonds and atoms as nodes and edges. B GNN for atom. We modified the 
graph attention network to incorporate the bond information from the other GNN and used it for the Atom 
graph. C GNN for bond. Similarly, we adapted the graph attention network to reflect the atom information 
from the GNN for the atom and exploited it to the Bond graph. D Attention. We adopted a self-attention 
mechanism between the nodes in the molecule to capture the long-distance features

Table 2 Feature initialization

Feature Value Encoding

Atom Atom type 0 to 100 one-hot encoding

The number of Bonds 0, 1, 2, 3, 4, 5 one-hot / real number

Formal Charge −2, −1, 0, 1, 2 one-hot / real number

Chirality unspecified, tetrahedral_cw,
tetrahedral_ccw, other

one-hot encoding

The number of Hs 0, 1, 2, 3, 4 one-hot / real number

Hybridization sp, sp2, sp3, sp3d, sp3d2 one-hot encoding

Aromaticity 0, 1 one-hot encoding

Atomic mass mass real number

Bond Bond type single, double,
triple, aromatic

one-hot encoding

Conjugated 0, 1 one-hot encoding

In ring 0, 1 one-hot encoding

Stereo one, any, e, z, cis, trans one-hot encoding
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model stability. Since molecules are composed of atoms connected by covalent bonds, 
accurately predicting molecular properties requires models that account for both 
atomic and bonding information. Recent studies [5, 15, 40, 52, 59] have shown that 
models integrating both atomic and bond information provide more accurate predic-
tions and richer representations compared to those focusing primarily on atoms and 
treating bonds merely as connections.

In our approach, we incorporate distinct graphs for atoms and bonds and iteratively 
updating both through a process of mutual reinforcement, where nodes are updated 
based on edge information and edges are updated based on node information. Further, 
we advance the integration of atom and bond information by employing a graph atten-
tion mechanism, which is known for its flexibility in learning structural information by 
assigning different weights to neighboring nodes, thus identifying crucial substructures. 
Our method uses two graph attention encoders—one for atoms and one for bonds–that 
are interconnected by sharing certain hidden states of atoms and bonds, updated using 
attention weights derived from neighboring atom and bond hidden states.

After extracting local features with the graph attention encoders, we apply a multi-
head attention mechanism to the combined features, aiming to improve predictive 
power. Multi-head attention is recognized for its reliability and stability compared to 
single attention mechanisms. While GNNs are typically limited to a predefined num-
ber of hops, multi-head attention allows for capturing useful information between dis-
tant nodes. By applying multi-head attention to the outputs from our local graph-based 
module, the model can extract global features from distant parts of the graph, comple-
menting the local features provided by the graph encoders. Further, to integrate local 
and global features effectively, we used a residual connection between the local and 
global modules, which helps prevent overfitting in the multi-head attention layers and 
preserves earlier local information.

To further improve robustness and performance, we adopted bagging, an ensemble 
method, during model training and inference. Ensemble methods like bagging reduce 
variance and bias, mitigating risks of overfitting and underfitting. In particular, bagging 
in our method promotes model diversity by training on data subsets with varied distri-
butions, improving generalization and stability by reducing variance across individual 
models. Bagging is well-suited for our method because we can generate diverse train-
ing data by employing balanced scaffold splitting method, as described in later section. 
For final inference in both classification and regression tasks, we used soft voting, which 
generally produces more reliable results than hard voting by averaging the predictions 
from multiple models.

This combined approach—graph attention for interactive atom-bond representation, 
multi-head attention for global feature extraction, and ensemble bagging for robust-
ness–provides a comprehensive framework for accurate molecular property prediction.

Sub‑model for the node

The node sub-model (Fig. 1B) is based on the graph attention network [2, 57], applying 
attention to connected nodes in the message-passing layers of the message-passing neu-
ral network. Message-passing involves exchanging information (i.e., message) between 
two connected nodes, and we incorporated the attention method into this process. 
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The initial hidden vector of the ith node as h0i  , is derived from the initial node vector 
xi through the function finit (Eq. 1), which includes learning parameters, a bias, and the 
exponential linear unit (ELU) activation function.

The message vector ml
j,i in the message-passing layer is derived from the node vectors 

hl−1
j  , hl−1

i  , and the edge vector hl−1
ji  from the previous layer using the function fmessage 

(Eq. 2). The hidden vector hlji is derived from the directional edge from the jth node to 
the ith node in the lth hidden layer in the edge sub-model, described in the next section. 
The attention coefficient αl

j,i (Eq. 3) is calculated by applying the softmax function to the 
message vectors ml

j,i , with j in the range of the neighbors of the ith node (N(i)). The node 
update function (Eq. 4) is formulated to obtain the node vector hli , considering the edge 
vector hl−1

ji  , the attention score αl
j,i , and the node vector hl−1

j  . Finally, multi-head atten-
tion with k heads, a more stable method than single attention, is applied to the node 
update function (Eq. 5).

Sub‑model for the edge

The edge sub-model (Fig.  1C), also based on the graph attention network, was con-
structed similarly to the node sub-model. We applied the attention mechanism to the 
directional message-passing neural network [63] to incorporate hidden states and mes-
sages for the edges, creating a novel model. By focusing on bonds, our model captures 
features distinct from those obtained by the node model, making it valuable for bond-
centric characteristics. This initial hidden vector of the bond between the ith and jth 
nodes, h0ij , is derived from the initial edge vector eij , node vector xi , and node vector xj 
through the function finit (Eq. 6). The hidden vector of the ith node in the lth hidden 
layer, hli , is inherited from the node sub-model.

With the initial states defined, we constructed the novel message function fmessage . The 
message ml

ki,ij is calculated using the edge hl−1

ki  , the edge hl−1
ij  , and the node hl−1

i  (Eq. 7). 
Here, ki represents the edge from the kth node to the ith node, ij represents the edge from 
the ith node to the jth node, and l denotes the layer depth. These messages derive the atten-
tion score αl

ki,ij through a softmax function (Eq. 8). This function operates among the edges 

(1)h0i = finit(xi)

(2)ml
j,i = fmessage hl−1

j , hl−1
i , hl−1

ji

(3)αl
j,i = Softmaxj∈N (i)

(
ml

j,i

)

(4)hli =
∑

j∈N (i)
αl
j,i∗fupdate(h

l−1

j
, hl−1

ji )

(5)hli =
1

K

K∑

k=1

∑
j∈N (i)

α
l,k
j,i ∗f

k
update(h

l−1,k

j
, hl−1,k

ji )
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(E(ij)), directly connected to the edge ij. The aggregating function (Eq. 9) leverages attention 
scores, edges, and nodes. Finally, we introduced the multi-head attention with n heads to 
this sub-model (Eq. 10).

Multi‑head attention network

We built our model on the graph neural network that extracts the features focusing on 
the nodes and edges, typically capturing local structural features. To incorporate local and 
global crucial features, we adopted a multi-head attention layer known for capturing distant 
nodes. Before applying this method, we merged the hidden states from the node and edge 
sub-models. As shown in Eq. 11, we aggregated the edges connected to the ith node and 
the node hLi  in the last (Lth) layer of the sub-models, obtaining a new initial hidden state ht0i  
using the function fupdate (Fig. 1D).

Once the new hidden states containing the local structural features were initialized, we 
applied the multi-head attention method to our model. The technique allowed us to deter-
mine the contributions of these local features by using the softmax function to calculate 
the importance of each sub-structure. In Eq. 12, the attention score αt

i,j representing the 
importance of the jth node relative to the ith node, is derived using the softmax function 
on the hidden states of nodes ht−1

i  and ht−1
j  , where t indicates the layer depth. The hidden 

state hti is then systematically calculated by summing all the nodes in the graph (N(G)) with 
their attention scores (Eq. 13). Finally, we applied the multi-head attention mechanism with 
k heads to our model (Eq. 14).

(6)h0ij = finit
(
xi, xj , eij

)

(7)ml
ki,ij = fmessage

(
hl−1

ki , hl−1
ij , hl−1

i

)

(8)αl
ki,ij = Softmaxki∈E(ij)

(
ml

ki,ij

)

(9)hlij =
∑

ki∈E(ij)
αl
ki,ij∗fupdate(h

l−1

ki
, hl−1

i )

(10)hlij =
1

N

N∑

n=1

∑
ki∈E(ij)

α
l,n
ki,ij∗f

n
update(h

l−1,n

ki
, hl−1,n

i )

(11)ht0i = fupdate(h
L
i ,

∑

j∈N (i)

hLji)

(12)αt
i,j = Softmaxj∈N (G)

(
fquery(h

t−1
i ), fkey(h

t−1
j )

T
)
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Readout phase

Following the multi-head attention layers, we adopted the readout method in our model to 
extract the hidden feature H of the molecule. For all nodes in the graph (N(G)), hTi  from the 
last (= Tth) multi-head attention layer was averaged (Eq. 15). Finally, the feed-forward neu-
ral network was applied to the output of the readout phase, yielding the predicted values.

Multi‑task learning and ensemble method

We employed binary cross-entropy (BCE) and mean squared error (MSE) loss functions 
for classification and regression tasks, respectively. For classification tasks, we adopted 
a multi-task learning approach, training a model on multiple tasks simultaneously [4]. 
This approach leverages larger datasets combined from multiple tasks, which is advanta-
geous when individual tasks have limited data. Multi-task learning also acts as a regu-
larization effect, reducing the risk of overfitting to any specific task. For instance, on the 
Tox21 dataset, consisting of 12 tasks in NR and SR, multi-task learning yielded better 
performance than single-task learning. We further enhanced our model through bag-
ging, an ensemble method that improves generalization and mitigates overfitting. In 
bagging, multiple training datasets are created by sampling subsets with varying distri-
butions, addressing data limitations and providing a diverse training base. Independent 
models are then trained on these samples, and the final prediction is made by combining 
the outputs from all trained models. For this ensemble inference, we used soft voting to 
calculate the final predictions. Unlike hard voting, which selects the prediction favored 
by the majority of models, soft voting averages the outputs from each model to produce 
the final prediction. As shown in Eq. 16, the result of sample i is derived by averaging the 
outputs across multiple models Mk.

Training and evaluation data

Similar to previous studies, we employed the balanced scaffold splitting method for 
evaluation, which introduces a more rigorous and scientifically meaningful challenge 

(13)hti =
∑

j∈N (G)
αt
i,j ∗ fvalue(h

t−1
j )

(14)hti =
1

K

K∑

k=1

∑
j∈N (G)

α
t,k
i,j ∗f

k
update(h

t−1,k

j
)

(15)H =
1

|N (G)|

∑
i∈N (G)

hTi

(16)ŷti =
1

K

∑K

k=1
Mk(x

t
i )
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compared to random or scaffold splitting [35, 50]. The balanced scaffold splitting method 
divides molecules into disjoint scaffold sets based on their structural scaffolds. These 
scaffold sets are then categorized into large and small sets according to a specified size 
threshold (e.g., half of the size of a test dataset). To ensure the representativeness of the 
training set and reduce bias in the validation and test datasets, large scaffold sets are 
consistently allocated to the training dataset.

To train and evaluate our ensemble model, we initially split a dataset using balanced 
scaffold splitting with a random seed, allocating 10% for testing and 90% for subsequent 
processing. We then applied a new random seed, referred to as the e-seed, distinct from 
the existing seed, to split the remaining data. Once the e-seed was determined, we fur-
ther divided this data into 80% for training and 10% for validation. This approach ena-
bled us to obtain multiple training-validation dataset pairs using different e-seed values, 
each pair containing slightly different scaffolds in the training dataset. This variability 
enabled us to train multiple models independently, supporting our ensemble model.

Model training

We trained our ensemble model using datasets created with balanced scaffold splitting. 
Before training, graphs and line graphs were extracted from the molecules in the datasets 
using RDKit [32]. Our model was implemented using Pytorch [1], PyTorch Lightning 
[11], PyTorch Geometric [17], and TorchVision [41]. PyTorch Geometric and TorchVi-
sion were specifically used to implement the graph and multi-head attention layers.

We trained our model by minimizing BCE and MSE loss functions for classification 
and regression tasks, respectively, on the preprocessed datasets. To prevent overfitting 
and improve model efficiency, we applied an early stopping based on the minimum vali-
dation loss [33, 46]. We trained our model on a single NVIDIA Tesla V100-DGXS-32 GB 
GPU and a CUDA 11.3 environment.

After training, we obtained multiple models from different e-seed splits, allowing us 
to make predictions on the test dataset using an ensemble approach with soft voting. In 
this method, the final prediction for the test set was obtained by averaging the outputs 
from each model. Final evaluation metrics, including AUROC for classification tasks and 
RMSE for regression tasks, were computed using Scikit-Learn [10].

During hyperparameter tuning, we applied early stopping method to prevent overfit-
ting, with a maximum epoch of 1000 and patience of 30 epochs. Patience represents the 
number of epochs that training continues after a new minimum loss value is found. We 
optimized our model on validation datasets with various hyperparameters: batch size, 
layer size, layer depth, learning rate, weight decay, and dropout rate. Detailed hyperpa-
rameter configurations are provided in Supplementary Table 1.

We experimented with different batch sizes to assess their effects on overfitting, 
underfitting, and generalization. The optimal batch sizes were found to be 64 for smaller 
datasets (e.g., BBBP) and 256 for larger datasets (e.g., ToxCast). We also tested different 
sizes and depths for the graph and attention layers, which significantly affected model 
performance. The best performance was achieved with a graph layer depth of three, an 
attention layer depth of one, and a layer size of 128 for both layers.
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For optimization, we adopted the Adam optimizer, known for its stability and speed. 
We adjusted two key parameters–learning rate and weight decay. Weight decay, similar 
to L2 regularization, was effective in preventing overfitting. The optimal model config-
uration was found with a learning rate of 1e-3 and a weight decay of zero. Addition-
ally, dropout was applied to further mitigate overfitting, with the highest performance 
observed at a dropout rate of 0.3.

Methods for performance comparison

We conducted a comprehensive comparison of our model with various existing meth-
ods of different approaches, including graph-based [19, 29, 31, 34, 39, 40,  51,  62, 63], 
SMILES-based [58], and pre-training methods [16, 22, 25, 35, 50, 58], using the Molecu-
leNet dataset. This thorough evaluation ensured the fairness and reliability of our model.

Firstly, we compared our model with nine graph-based methods built on the message-
passing neural network framework, including AttentiveFP [62], DMPNN [63], TrimNet 
[34], and CD-MVGNN [40]. AttentiveFP integrates a small graph into a large one using 
a graph attention mechanism to extract the critical substructures. DMPNN treats bonds 
as nodes to solve the tottering problem, while TrimNet exploits both bond and atom 
features to enhance the representation of molecular features. CD-MVGNN integrates 
atom- and bond-based GNNs with disagreement loss, mitigating the difference in pre-
dictions between these GNNs.

Secondly, we evaluated our model against the SMILES-BERT model [58], which uses 
the BERT architecture with SMILES string as input to represent chemical structures.

Lastly, we compared our model with six pre-training methods, such as GROVER [50], 
MPG [35], and KANO [16]. These methods were pre-trained on a large datasets like 
ZINC [24] and fine-tuned on small datasets like MoleculeNet. GROVER employs multi-
level pre-tasks predicting masked information and motifs, MPG used self-supervised 
learning with the tasks of predicting the masked atom information and pairwise half-
graph discrimination. KANO introduces contrastive learning between the augmented 
molecular graph for the knowledge graph of elements and the enhanced molecular 
graph for functional groups.

Results
We evaluated the accuracy of our model by comparing it to state-of-the-art models. To 
assess the stability and generalization of the models, we tested our model and several 
models across different data characteristics using various random seed values. Addition-
ally, we analyzed the effectiveness of our ensemble method in handling data scarcity. An 
ablation study provided insight into the contribution of each model component, offering 
a comprehensive understanding of their roles and impact.

Performance evaluation on MoleculeNet dataset

We evaluated our model with eight state-of-the-art graph-based models and six pre-
trained models [16, 19, 22, 25, 29, 31, 34, 35, 39, 50, 51, 58, 62, 63]. These methods 
were tested on two datasets: dataset-a, initially used to validate graph-based meth-
ods [50], and dataset-b, initially used to evaluate pre-trained models [35]. Both data-
sets were split using different random seeds for scaffold splitting, resulting in varying 
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scaffold distributions across the training, validation, and test sets. All models, includ-
ing ours, were evaluated on consistent test datasets to ensure fair comparison. We 
measured AUROC for classification tasks and RMSE for regression tasks, averaging 
results over three random seed values for comparison.

On dataset-a, initially used in GROVER [50], our model achieved an average 
AUROC of 0.821 across six classification tasks, placing second highest. GROVER led 
with an average AUROC of 0.834, followed by KANO with 0.814 as the third (Table 3). 
For regression tasks, GROVER achieved the lowest average RMSE scores of 1.544 and 
0.560 on FreeSolv and Lipo, respectively, while our method reached the lowest RMSE 
of 0.746 on ESOL. On dataset-b, initially used in MPG [35], our model showed strong 
performance with an average AUROC of 0.851 on six classification tasks, followed by 
MPG and the KANO with AUROCs of 0.841 and 0.833, respectively. In regression 
tasks on FreeSolv, ESOL, and Lipo datasets, MPG, KANO, and our method achieved 
the lowest RMSE scores of 1.269, 0.405, and 0.545, respectively (Table 4).

Table 3 Performance comparison with current state-of-the-art methods on dataset-a 

Average AUROC and RMSE scores used three random seed values

The numbers in parenthesis are standard deviations of the results on three random seed values

Bold means pretraining model

The bold number and underlined number mean the highest and second-highest numbers
a [a] is from [50]

Dataset

Model Classification (AUROC) Regression (RMSE) Data

BBBP Tox21 ToxCast SIDER ClinTox BACE FreeSolv ESOL Lipo

MGCN 0.850 0.707 0.663 0.552 0.634 0.734 3.349 1.266 1.113

[39] (0.064) (0.016) (0.009) (0.018) (0.042) (0.030) (0.097) (0.147) (0.041)

SchNet 0.847 0.767 0.679 0.545 0.717 0.750 3.215 1.045 0.909

[51] (0.024) (0.025) (0.021) (0.038) (0.042) (0.033) (0.755) (0.064) (0.098)

Weave 0.837 0.741 0.678 0.543 0.823 0.791 2.398 1.158 0.813

[29] (0.065) (0.044) (0.024) (0.034) (0.023) (0.008) (0.250) (0.055) (0.042)

GraphConv 0.877 0.772 0.650 0.593 0.845 0.854 2.900 1.068 0.712

[31] (0.036) (0.041) (0.025) (0.035) (0.051) (0.011) (0.135) (0.050) (0.049)

HU.et.al 0.915 0.811 0.714 0.614 0.762 0.851 - - -

[22] (0.040) (0.015) (0.019) (0.006) (0.058) (0.027)

AttentiveFP 0.908 0.807 0.579 0.605 0.933 0.863 2.030 0.853 0.650

[62] (0.050) (0.020) (0.001) (0.060) (0.020) (0.015) (0.420) (0.060) (0.030)

MPNN 0.913 0.808 0.691 0.595 0.879 0.815 2.185 1.167 0.672 [a]a

[19] (0.041) (0.024) (0.013) (0.030) (0.054) (0.044) (0.952) (0.430) (0.051)

DMPNN 0.919 0.826 0.718 0.632 0.897 0.852 2.177 0.980 0.653

[63] (0.030) (0.023) (0.011) (0.023) (0.040) (0.053) (0.914) (0.258) (0.046)

MPG 0.935 0.805 0.712 0.628 0.915 0.839 2.286 0.908 0.637

[35] (0.012) (0.015) (0.010) (0.020) (0.023) (0.052) (0.389) (0.105) (0.044)

GROVER 0.940 0.831 0.737 0.658 0.944 0.894 1.544 0.831 0.560
[50] (0.019) (0.025) (0.010) (0.023) (0.021) (0.028) (0.397) (0.120) (0.035)
KANO 0.939 0.808 0.723 0.626 0.938 0.852 1.938 0.840 0.596

[16] (0.016) (0.018) (0.008) (0.009) (0.022) (0.034) (0.288) (0.150) (0.036)

Our model 0.956 0.822 0.749 0.626 0.921 0.849 1.940 0.746 0.597

(0.018) (0.029) (0.001) (0.007) (0.035) (0.028) (0.312) (0.093) (0.027)
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Interestingly, several models showed substantial performance differences between the 
two datasets. Our method and KANO demonstrated stable performance across both 
datasets, whereas GROVER and MPG showed significant performance variations. These 
inconsistencies may be due to structural differences in the scaffold distributions of the 
two datasets, suggesting that each model focused on different molecular regions dur-
ing training. To address this and ensure fair comparisons, we conducted an extensive 
evaluation using 30 random seed values, detailed in Sect. "Performance evaluation with 
multiple random seed values".

Performance evaluation with multiple random seed values

The performance variations observed between dataset-a and dataset-b for several meth-
ods (Sect.  "Performance evaluation on MoleculeNet dataset") underscore the need to 
assess robustness across different dataset compositions. Thus, using 30 random seed 
values, we compared our model to prominent methods, including GROVER, MPG, CD-
MVGNN, and KANO, on nine benchmark datasets. GROVER [50] and MPG [35] were 
selected due to their notable performance difference, KANO [16] as a recent advance-
ment in the field, and CD-MVGNN [40] for its multi-view approach that considers both 
atoms and bonds for non-isomorphic graph differentiation.

As shown in Table 5, our method attained higher average AUROC scores of 0.957, 
0.740, 0.628, and 0.919 on the BBBP, ToxCast, SIDER, and ClinTox, respectively. In the 
regression tasks, our method also obtained the lowest average RMSE scores of 0.783 
and 0.597 on the ESOL and Lipo datasets. Meanwhile, KANO and CD-MVGNN out-
performed other models on Tox21 and BACE datasets, with AUROC scores of 0.837 

Table 4 Performance comparison with current state-of-the-art methods on dataset-b 

Average AUROC and RMSE scores used three random seed values

The numbers in parenthesis are standard deviations of the results on three random seed values

Bold means pretraining model

The bold number and underlined number mean the highest and second-highest numbers
a [b] is from [35]

Dataset

Model Classification (AUROC) Regression (RMSE) Data

BBBP Tox21 ToxCast SIDER ClinTox BACE FreeSolv ESOL Lipo

Mol2Vec 0.876 0.805 0.690 0.601 0.828 0.841 5.752 2.358 1.178

[25] (0.030) (0.015) (0.014) (0.023) (0.023) (0.052) (1.245) (0.452) (0.054)

TrimNet 0.892 0.812 0.652 0.606 0.906 0.843 2.529 1.282 0.702

[34] (0.025) (0.019) (0.032) (0.006) (0.017) (0.025) (0.111) (0.029) (0.008)

SMILES‑BERT 0.959 0.803 0.655 0.568 0.985 0.849 2.974 0.841 0.666

[58] (0.009) (0.010) (0.010) (0.031) (0.014) (0.021) (0.510) (0.096) (0.029)

MPG 0.922 0.837 0.748 0.658 0.963 0.920 1.269 0.741 0.556 [b]a

[35] (0.012) (0.019) (0.005) (0.012) (0.028) (0.013) (0.192) (0.017) (0.017)

GROVER 0.883 0.794 0.698 0.598 0.935 0.915 1.713 0.595 0.858

[50] (0.024) (0.021) (0.007) (0.028) (0.049) (0.037) (0.249) (0.309) (0.054)

KANO 0.947 0.841 0.740 0.646 0.906 0.919 1.311 0.405 0.579

[16] (0.018) (0.017) (0.019) (0.015) (0.101) (0.051) (0.107) (0.047) (0.009)

Our model 0.951 0.853 0.755 0.661 0.958 0.929 1.402 0.736 0.545
(0.027) (0.004) (0.011) (0.024) (0.040) (0.022) (0.197) (0.065) (0.032)
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and 0.874, respectively. KANO also achieved the best score of 1.970 in the regres-
sion task on the FreeSolv dataset. These results demonstrate the robustness of our 
model in handling data variations, showing the effectiveness of the ensemble method, 
particularly for small datasets. Statistical significance was validated through Student’s 
t-test and Welch’s t-test (Supplementary Fig. 1 and 2).

Among the five models evaluated on nine datasets, our model ranked the best on six 
datasets and the second-best on two others. These highlight the importance of devel-
oping more generalized and integrated models. Additionally, CD-MVGNN displayed 
the best performances on one dataset and the second-best performances on the two. 
These results suggest that multi-view approaches consistently improved the predic-
tion of molecular properties. KANO presented the best scores on two datasets and 
the second-best scores on the three, demonstrating the effectiveness of the pretrain-
ing and knowledge- guided learning. In this context, the balanced performance of our 
model across multiple datasets highlights its potential for a wide range of molecular 
property prediction tasks, and our method could promise better predictions with pre-
training in future work.

Contribution of the ensemble model

We applied an ensemble method to our model to address data scarcity on the nine 
MoleculeNet datasets, which contain only a few thousand samples. To validate the 
effectiveness of the ensemble method, we compared our ensemble model to single 
models across 30 random seed values. We used balanced scaffold splitting to create 
six single models with distinct e-seed values (from 0 to 5), training each model on a 
unique training and validation dataset (Figs. 2 and 3). The ensemble model was then 
constructed by aggregating these six models using soft voting.

Table 5 Performance comparison with sufficient random seed values

Average AUROC and RMSE scores used 30 random seed values

Bold means pretraining model

The bold number and underlined number mean the highest and second-highest numbers

Dataset

Classification (AUROC) Regression (RMSE)

BBBP Tox21 ToxCast SIDER ClinTox BACE FreeSolv ESOL Lipo

GROVER 0.900 0.787 0.664 0.599 0.854 0.815 2.376 0.983 0.805

(Rong, et al., 2020)[50] (0.034) (0.041) (0.029) (0.036) (0.142) (0.046) (0.891) (0.175) (0.072)

MPG 0.919 0.817 0.713 0.625 0.908 0.872 2.165 0.878 0.637

[35] (0.025) (0.021) (0.016) (0.024) (0.031) (0.044) (0.594) (0.128) (0.043)

CD-MVGNN 0.907 0.837 0.729 0.623 0.885 0.870 2.049 0.825 0.600

(Ma, et al., 2022) [40] (0.032) (0.020) (0.015) (0.030) (0.047) (0.048) (0.613) (0.097) (0.055)

KANO 0.951 0.820 0.719 0.614 0.910 0.874 1.970 0.798 0.618

(Fang, et al., 2023) [16] (0.016) (0.023) (0.012) (0.026) (0.040) (0.043) (0.583) (0.091) (0.046)

Our 0.957 0.836 0.740 0.628 0.919 0.854 2.019 0.783 0.597
(0.017) (0.021) (0.014) (0.027) (0.037) (0.045) (0.532) (0.074) (0.038)
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Our results show that the ensemble model consistently outperformed each individual 
model. For classification tasks, the ensemble model achieved higher AUROC scores than 
all single models (Fig. 2). The ensemble model improved AUROC scores by 1.4%, 2.4%, 
3.0%, 3.3%, 2.9%, and 3.4% on average for the BBBP, Tox21, ToxCast, SIDER, ClinTox, 
and BACE, respectively. For regression, the ensemble model achieved RMSE improve-
ments of 13.8%, 10.3%, and 8.3% on average for the FreeSolv, ESOL, and Lipo data-
sets, respectively (Fig. 3). These results indicate that the ensemble method significantly 
enhances performance, especially in regression tasks. Detailed classification and regres-
sion results are presented in Supplementary Table 3 and 4.

Ablation study

We conducted a systematic ablation study to assess the impact of individual components 
within our model, using MoleculeNet physiology datasets from dataset-b. We first eval-
uated the complete model (M1 in Fig. 4), which integrates all components such as sub-
model for node, sub-model for edge, multi-head attention, and ensemble method. We 
then tested a variant of the model without the ensemble method (M2 in Fig. 4). From the 
M2 model, we built and evaluated three additional models, each independently elimi-
nating one component − either the sub-model for node, sub-model for edge, and multi-
head attention.

The ablation study revealed that each component significantly contributed to the over-
all performance, with the full model achieving the best performance, underscoring the 
importance of incorporating all components (Fig. 4). The basic models containing only 
a single component (either the atom graph, bond graph, or attention) showed lower 
AUROC scores of 0.795, 0.801, and 0.777, respectively, which are approximately 5%, 4%, 
and 7% lower than our full model. Notably, the comparison between the M1 and M2 
models showed a significant 2.3% increase in AUROC score attributed to the ensem-
ble method. Additionally, we observed AUROC improvements ranging from 1.0% to 
5.1% when comparing the M2 model to the other models lacking specific components. 
Detailed results on the physiology datasets are presented in Supplementary Table 5.

Discussion
As with many clinical prediction tasks, this study faced limitations due to the availabil-
ity of experimentally labeled data, resulting in small sample sizes that can challenge the 
training of deep learning models and potentially compromise robustness and generaliza-
tion. Despite these challenges, our multi-view model, which integrates atom, bond, and 
global features alongside an ensemble method, showed consistently stable performance 
across most experiments. These findings suggest that our approach to enhancing gen-
eralization could be valuable for clinical applications where data availability is limited. 
We believe this model holds promise for clinical studies, potentially facilitating reliable 
predictions in scenarios with constrained data resources.

In addition, the ensemble method has a limitation, increasing computational cost as 
the number of models increases. Based on our experiments, our results indicate that 
while our model uses higher computational resources than other architectures, it still 
performs efficiently within practical limits. For example, we measured training time for 
MPG [35] and our method; MPG is one of the pretrained methods, and our method 
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exploits the ensemble method. To compare these two methods, we chose the BBBP data-
set, which includes a small amount of data and one task, and the ToxCast dataset, which 
contains a relatively large amount of data and 617 tasks. On the BBBP dataset, MPG 
takes 27 min for finetuning, and our method takes 24 min for the ensemble. If a data-
set is small, the ensemble method works efficiently through optimization, such as early 
stopping. For the ToxCast dataset, MPG takes 46 min, and our method takes one hour 
and 21 min. Following our anticipation, we observed that a large dataset could demand 
higher computational resources for the ensemble method, but it still has been within 
practical limits. Additionally, we can apply several potential optimizations to reduce 
computational costs, such as reducing the number of attention layers without significant 
loss of accuracy and leveraging sparse attention mechanisms that selectively focus on 
critical substructures when it was applied to larger datasets or more complex molecular 
structures.

To address these challenges associated with the ensemble method, future work should 
be focused on developing more efficient and practical ensemble approaches for deep 
learning models. Pretraining methods might be synergetic to the ensemble method by 
diminishing learning time with fine-tuning. Considering KANO achieved better per-
formances in some of our experiments, adopting the ensemble method to a pre-trained 
model could promise to reduce computational costs and enhance performance. Addi-
tionally, replacing soft voting with attention-based networks could provide improved 
interpretability, which is essential for many clinical applications.

Fig. 4 Ablation study evaluating the contribution of four components in our model. M1 (green) represents 
the full model, incorporating the atom graph, bond graph, attention mechanism, and ensemble method. M2 
(light green) includes all components except the ensemble method. The next three models (light blue) each 
exclude one component-either the attention mechanism, bond graph, or atom graph. The last three models 
(pink) include only one component each (either the attention mechanism, bond graph, or atom graph). The 
full model, M1, achieved the highest performance, with an average AUROC score of 0.836 on MoleculeNet 
physiology datasets
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Conclusions
This study presents a graph-integrated model designed to enhance the prediction 
of molecular properties by effectively capturing both local and global substructural 
features. The model incorporates graph attention encoders and multi-head atten-
tion mechanisms to a deeper structural understanding. The graph attention networks 
enable our model to detect more specific structural properties by considering inter-
actions between atoms and edges, while the multi-head attention network captures 
the relationships between both proximate and distant substructures. This constitu-
tion could lead our model to reflect locally and globally essential substructures. Fur-
thermore, the multi-task learning method was adapted to increase performance by 
facilitating task cooperation and employed an ensemble method to enhance robust-
ness and generalization.

We validated the effectiveness of our model through experiments across 30 random 
seed values on nine MoleculeNet datasets, comparing it with several state-of-the-art 
methods. Our model outperformed other models on four classification and two regres-
sion datasets, where the results demonstrate higher predictive accuracy. These results 
underscore the advantage of our ensemble method and highlight the importance of inte-
grating local and global structural information in predicting molecular properties.
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