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Abstract 

Multimodal brain network analysis enables a comprehensive understanding of neuro-
logical disorders by integrating information from multiple neuroimaging modalities. 
However, existing methods often struggle to effectively model the complex structures 
of multimodal brain networks. In this paper, we propose a novel tensor-based graph 
convolutional network (TGNet) framework that combines tensor decomposition 
with multi-layer GCNs to capture both the homogeneity and intricate graph struc-
tures of multimodal brain networks. We evaluate TGNet on four datasets—HIV, Bipolar 
Disorder (BP), and Parkinson’s Disease (PPMI), Alzheimer’s Disease (ADNI)—demonstrat-
ing that it significantly outperforms existing methods for disease classification tasks, 
particularly in scenarios with limited sample sizes. The robustness and effectiveness 
of TGNet highlight its potential for advancing multimodal brain network analysis. The 
code is available at https:// github. com/ rongz hou7/ TGNet.

Keywords: Multimodal brain networks, Tensor, Graph convolutional network, Disease 
classification

Introduction
In recent years, brain network analysis has attracted considerable interest in the fields 
of neuroscience and related sciences, as it plays an important role in the understanding 
of biologically fundamental mechanisms of brain function, such as how the brain sus-
tains cognition, what signals the connections convey and how these signals affect brain 
regions [1, 2]. In particular, brain network analysis has been found useful in the detec-
tion of cognitive impairment and early diagnosis of several neurodegenerative diseases 
such as Alzheimer’s disease, Parkinson’s disease, and HIV-dementia [3–5]. Multimodal 
brain network analysis, which integrates graph-structured information from multiple 
neuroimaging modalities such as structural magnetic resonance imaging (sMRI), dif-
fusion tensor imaging (DTI), and functional magnetic resonance imaging (fMRI), has 
emerged as a powerful approach for understanding complex brain functions [6, 7]. This 
integration enhances the overall understanding of brain network structures and patholo-
gies by leveraging the strengths of each modality, thereby enabling more effective diag-
nosis and biomarker discovery.
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In the analysis of multimodal brain networks, various machine learning methods have 
been investigated for representation learning and disease prediction from shallow to 
deep models, such as canonical correlation analysis (CCA)  [8, 9], multiple graph ker-
nel learning  [10], tensor decomposition  [11–13], and convolutional neural networks 
(CNNs)  [14–19]. Although significant progress has been made in this field, there still 
lacks a general and effective model to capture multimodal aspects of brain networks. 
In particular, the brain network has sophisticated and non-linear structures, which may 
not be well captured by shallow models. CNN-based approaches specialize in process-
ing data that has a grid-like topology such as images, which may not sufficiently cap-
ture the graph structure of brain networks. Besides, most of the traditional CNN-based 
approaches treat all the modalities (or channels) equitably and cannot exploit the corre-
lation among multiple modalities.

Recently, graph convolutional networks (GCNs) have emerged as a promising 
approach for integrating multimodal data and learning powerful representations from 
graph-structured information, and they have been successfully applied to multimodal 
brain network analysis  [20–27]. For instance, MVGCN  [20] introduces a multi-view 
GCN to integrate brain network data from multiple neuroimaging modalities, signifi-
cantly improving predictive accuracy in Parkinson’s disease. Similarly, MVS-GCN [21] 
employs a prior brain structure learning-guided multi-view GCN framework to fuse 
different brain network modalities, enhancing autism spectrum disorder diagnosis. 
However, these approaches rely heavily on prior knowledge to define a common feature 
space, which limits their applicability across broader scenarios. Approaches like Mask-
GNN [22] attempt to simplify cross-modal feature interactions through an edge-mask-
ing strategy, but they fall short in capturing the intricate dependencies between different 
brain network modalities. Similarly, while SGCN  [23] integrates multimodal regional 
neuroimaging data into a single graph and enhances GCN interpretability by employ-
ing both node-masking and edge-masking strategies to emphasize key nodes and edges, 
it still struggles to fully capture the complex interactions inherent in multimodal data. 
Additionally, methods that combine shallow and deep learning models, such as GCN-
SVM  [24], which pairs GCN for node embedding with SVM for classification, have 
shown potential in improving performance for brain disease diagnosis. However, these 
approaches often rely on predefined graph structures or K-nearest neighbors, which 
limits their ability to generalize to more complex multimodal datasets. In light of these 
limitations, fully leveraging multimodal brain network data remains a challenge, particu-
larly in addressing data alignment errors and reducing dependence on manual feature 
selection. Therefore, developing a more generalized GCN model for multimodal brain 
network analysis, capable of effectively capturing the inherent graph structures of multi-
modal data without relying on predefined knowledge, is crucial for enhancing adaptabil-
ity, robustness, and the overall effectiveness of brain network analysis.

In this paper, we introduce TGNet, a general tensor-based GCN framework for multi-
modal brain network analysis. Our approach provides a novel way to model multimodal 
brain networks globally by leveraging tensor representations and multiplex GCNs. First, 
we stack multimodal brain networks from all subjects into a high-dimensional tensor 
and apply Higher-Order Singular Value Decomposition (HOSVD) for multilinear ten-
sor projection, which captures both the homogeneity and structural equivalence of 
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multimodal networks while preserving essential information. Next, the projected tensor 
is used to construct a graph structure through a K-Nearest Neighbor (KNN) algorithm, 
defining relationships between nodes. This graph structure, along with the tensor fea-
tures, is then fed into the multi-GCNs for learning representations across modalities. 
Finally, a modality pooling layer integrates these representations by assigning weights 
to each modality, and pooled features are passed through a fully connected network for 
disease classification. This process effectively combines tensor projection with GCN to 
achieve comprehensive multimodal integration.

The main contributions of this paper are summarized as follows:

• We introduce a novel tensor-based graph convolutional network (TGNet) for mul-
timodal brain network analysis. TGNet leverages tensor representation to formulate 
multiplex GCNs, capturing both the homogeneity of multimodal data and the inher-
ent properties of graphs. By learning the graph structure through projection pursuit, 
TGNet simplifies the process using a straightforward multilinear tensor projection.

• Our model extends GCNs to multimodal data using tensor representation, address-
ing the challenge of predefining the population graph structure. This structure is 
often ambiguous due to the inherent complexity of intra-graph and inter-graph con-
nections.

• We evaluate the effectiveness of the proposed TGNet model on three challenging 
real datasets (HIV, Bipolar disorder, Parkinson’s disease, and Alzheimer’s disease) for 
disease classification tasks. The results show that TGNet delivers highly competitive 
performance compared to existing thirteen methods.

The remainder of the paper is organized as follows. In “Related work”  section, we 
review related work on multimodal brain network analysis. In “Methodology” section, 
we first describe the problem formulation and then present our model along with the 
corresponding learning algorithm. In “Experiments”  section, we conduct a compre-
hensive experimental analysis to validate and justify the effectiveness of the proposed 
method. Finally, in “Conclusions” section, we conclude the paper based on our findings.

Related work
Tensor-Based Multimodal Brain Network Analysis. Multimodal brain network data 
can be effectively represented using tensors, which capture complex, multi-dimen-
sional relationships across modalities. Tensor-based methods often employ tensor 
decomposition and factorization techniques to extract informative features from such 
high-dimensional data. For example, MPCA [28] is a general multilinear principal com-
ponent analysis approach for feature extraction from tensor objects. It has been applied 
to concatenate multimodal brain networks into a single unified tensor, enabling effec-
tive extraction of features for each subject across both modalities and individuals [29]. 
MIC [30] first used the kernel-based similarity matrices to form an initial tensor across 
multiple modalities, followed by CP decomposition to extract feature representation for 
each subject. In [31], the authors proposed a multi-view clustering method using t-prod-
uct tensor factorization with sparse and low-rank constraints to capture high-order cor-
relations in multi-view data. Moreover, [32] introduced a multi-view clustering approach 
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with graph embedding (MCGE) by modeling multi-view graph data as tensors, using 
tensor factorization to jointly learn graph embeddings and improve clustering on multi-
modal brain networks. In M2E [33], partial symmetric tensor decomposition is explored 
to learn the multi-view multi-graph embeddings for multimodal brain network analy-
sis. Recent developments have advanced these approaches further. For example,  [34] 
proposed a multi-view functional brain network (FBN) fusion strategy for brain disease 
identification, which stacks adjacency matrices from multiple FBNs estimation methods 
into a third-order tensor and applies tensor factorization to derive joint embeddings, 
capturing relationships across modalities [35] proposed a slow-thinking module that 
constructed a knowledge graph using tensor decomposition to further refine the multi-
modal integration for brain disease diagnosis.

Despite these advancements, a common limitation of existing tensor-based methods 
is their inability to fully exploit the deep graph structures present in brain networks. 
While tensor decomposition can effectively model high-dimensional relationships, these 
approaches often fail to capture the non-linear dependencies and complex topological 
features that are crucial for brain network analysis. Specifically, non-linear dependencies 
refer to the intricate, non-linear interactions across different data modalities, which are 
often oversimplified by conventional tensor methods. Additionally, complex topological 
features describe the hierarchical and multi-level connectivity patterns within brain net-
works that are essential for accurately modeling neural structure and function. However, 
conventional tensor-based multimodal brain network methods often struggle to ade-
quately model these intricate relationships due to their reliance on multilinear assump-
tions and the limited ability to capture complex topological information. This results in a 
lack of sensitivity to subtle yet critical interactions between different modalities, poten-
tially leading to an incomplete understanding of brain connectivity and function.

GCN-based Multimodal Brain Network Analysis. In recent years, GCNs [15, 36, 
37] have received growing attention and demonstrated to be useful in multimodal 
brain network analysis. For instance,  [20] devised a multi-view GCN (MVGCN) 
method, which requires prior knowledge of geometric coordinates to define a com-
mon feature representation space, yet this kind of information is not always availa-
ble and is often difficult to obtain in multimodal cases [38] introduced the attention 
mechanism to combine the multimodal features acquired by GCN, but it requires vec-
torized features as input, which may result in exceptionally long vectors and ignore 
the graph structural information of brain networks. More recently,  [39] proposed a 
cross-modal distillation method to capture inter-modal dependencies through graph 
learning and mutual learning mechanisms. However, it depends on high-quality 
multi-modal graph mapping and cross-distillation, which may cause low-quality 
learning in a few modalities to affect the overall framework performance [40] merged 
the multi-modal data processed by their respective GNN branches at the level of node 
vectors and adjacency matrices. Yet, it didn’t utilize the correlations during the fea-
ture extraction process across different modalities, thereby constraining the extent of 
multi-modal information integration. Additionally,  [26] introduced an interpretable 
GNN model for multimodal brain network analysis, focusing on identifying disorder-
specific biomarkers in connectome data. However, its reliance on small neuroimag-
ing datasets limits scalability, potentially affecting performance on larger multimodal 
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datasets [25] integrated sMRI and fMRI data by using features from the structural 
Graph to enhance edge weights in the functional Graph, enabling more accurate 
neuropsychiatric disorder classification through a multi-layer GCN, but it depends 
on handcrafted features and predefined structural graphs, limiting its scalability 
[21] proposed a multi-view GCN framework for brain disorder diagnosis, integrat-
ing graph structure learning and multi-task embedding to unify graph representa-
tions across views. However, its effectiveness depends on well-aligned multi-view 
data, which can limit performance in datasets with higher variability or incomplete 
views [21] proposed a multi-view GCN framework for brain disorder diagnosis, 
which integrates graph structure learning and multi-task embedding to capture func-
tional subnetworks across modalities. However, it relies heavily on geometric prior 
knowledge,limiting their applicability. Similarly, [24] introduced a multi-modal GCN 
method that jointly embeds fMRI and DTI data for improved brain disorder diag-
nosis, leveraging prior knowledge of brain structures. However, its dependency on 
structured geometric priors limits flexibility. Moreover, [23] developed a sparse inter-
pretable GCN model for multi-modal brain disease diagnosis by learning importance 
probabilities for brain regions and connections across imaging modalities. Nonethe-
less, it simply combines multimodal ROI-based features into a single brain network 
and falls short in handling complex interactions between modalities. Lastly,  [22] 
developed an interpretable MaskGNN model for multimodal brain connectivity anal-
ysis, integrating fMRI, DTI, and sMRI to enhance brain structure-function under-
standing. However, the model relies on consistent neuroimaging alignment, which 
may constrain its applicability to multimodal datasets with higher cross-modality 
variance.

Recent research has also explored combining tensor and GCN models for various 
tasks [41–47]. For example, [41] discovered overlapping functional brain networks by 
using tensor decomposition before feeding into GCNs. The Kronecker sum operation 
was utilized in [42], and t-product was employed in [43, 44] to handle dynamic graphs 
and multi-relational graphs, respectively. More recently,  [48] utilized low-rank ten-
sor approximation to optimize the functional connectivity network generated from an 
fMRI image [47] leverages DTI as the data preprocessing method for GCN with the 
self-attention mechanism. Additionally,  [27] employed adversarial decomposed-VAE 
to fuse brain structure and function for analyzing cognitive impairments, although 
its reliance on accurate modality alignment can hinder its effectiveness when data is 
misaligned [49] introduces tensor-based complex-valued graph neural network for 
dynamic coupling multimodal brain networks.

While existing GCN-based multimodal methods have made notable progress, they 
continue to face significant challenges, such as reliance on geometric prior knowl-
edge, limited ability to handle complex cross-modal interactions, and dependence on 
high-quality multimodal data alignment. To overcome these limitations, we intro-
duce a framework that combines tensor representations with GCNs, allowing for 
the simultaneous modeling of multimodal relationships and the capture of graph 
structural information. This approach offers a more flexible and scalable solution for 
complex multimodal brain network data, leading to improved integration and perfor-
mance across diverse modalities.
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Methodology
Problem formulation

A brain network usually leverages a graph structure to describe interconnections 
between brain regions, which can be represented by a weighted graph G = {V ,E,X} , 
where V = {vi}

N
i=1 is the node set indicating brain regions, E = {eij}

N
i,j=1 is the edge 

set between nodes and X ∈ R
N×N  is the weighted connectivity matrix where xij is 

the corresponding edge weight. In the multimodal scenario, assume that each sub-
ject consists of M-modal brain networks {G1, · · · ,GM} , where each one is extracted 
from a specific imaging modality (or measure) such as fMRI and DTI. These net-
works share the same set of nodes, i.e., using an identical definition of brain regions, 
but may differ in network topology and edge weights. We consider a multimodal 
brain network dataset D from S subjects with M different modalities. Specifically, 
D = {({G1s, · · · ,Gms, · · · ,GMs}, ys)}

S
s=1 , where Gms represents the brain network data 

for the m-th modality of the s-th subject, and ys is the corresponding class label. The 
primary objective of multimodal brain network data analysis is to explore the inter-
connections among various modalities.

The goal of multimodal brain network data analysis is to probe the interrelation-
ships between different modalities and obtain from low-level or raw relational data 
higher-level descriptions of brain-behavior states to facilitate disease diagnosis or 
treatment monitoring.

Architecture of TGNet

Figure 1 provides an overview of the proposed tensor-based multiplex graph convo-
lutional network (TGNet) model, which consists of three major components. Briefly, 
the first part performs cross-modality bridging with tensor decomposition, which 
is used to efficiently extract latent structures across modalities and individuals. 
The second part is the multi-GCN aggregator of TGNet model, which adopts GCN 
to capture intrinsic data graph structures, and then encode relationships of differ-
ent modalities. The third part involves modality pooling and prediction, where the 
model integrates the information from multiple modalities using trainable modality 
importance weights and then performs classification with a fully connected network. 
TGNet can be used in both spectral and spatial domains, as the graph convolution 
process is equivalent regardless of the specific domain [50]. In this study, we consider 
a general multi-layer GCN model with the following propagation rule [36]:

where Ã = A + IN is the adjacency matrix of the undirected graph G with self-connec-
tions IN , d̃ii = j ãij and W(l) is a layer-specific trainable weight matrix. σ(·) denotes 
an activation function, such as the ReLU(·) = max(0, ·) , and H(l) ∈ R

N×D is the feature 
matrix of the l-th layer.

In the following, we discuss each component in detail and discuss how the form of 
this propagation rule can be effectively extended to multiplex models with tensor rep-
resentation, thereby enabling the formation of a multimodal learning environment.

(1)H
(l+1) = σ(D̃− 1

2 ÃD̃
− 1

2H
(l)
W

(l))
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Cross‑modality bridging

It is nontrivial to design a graph-based model to combine multimodal brain networks 
as these networks are extremely heterogeneous within and across individuals and 
modalities. Motivated by the fact that tensor analysis can effectively model a family 
of multi-relational data and capture the inherent heterogeneity across modalities and 
individuals [51–53], we propose a tensor-based projection method to map all subjects 
in each modality into a common space, facilitating the efficient fusion of multimodal 
brain networks.

Specifically, given a multimodal brain network dataset D = {{G1s , · · · ,Gms , · · · ,GMs}, ys}
S
s=1

 , 
we construct a single 4D tensor X ∈ R

N×N×M×S , where N is the number of brain 
regions (nodes), M is the number of modalities, and S is the number of subjects. The 
weighted connectivity matrices is Xms = X (:, :,m, s) ∈ R

N×N  , where m refers to the 
modality index, and s refers to the subject index. To explore the uniformity of mul-
timodal brain networks and also capture most data variation, we adopt the feature 
extraction method in [54] and introduce common feature projection matrices U1 and 
U2 by minimizing the following problem:

where U1 ∈ R
N×d characterizes node-level relationship, U2 ∈ R

N×d is used for feature 
extraction and Cms is the coefficient matrix of Xms obtained via Cms = U

T
1 XmsU2.

The projection matrices U1 and U2 are obtained by performing higher-order sin-
gular value decomposition (HOSVD) on the tensor X  . Specifically, the optimization 
problem in Eq. (2) can be written as:

where ×k denotes the tensor k-mode product ( k = 1, 2 ). We notice that U1 = U2 due 
to the symmetric property of Xms , thus we focus our analysis on the effectiveness of U1 . 
Intuitively, the left projection matrix U1 in Eq.  (2) captures the global node-level rela-
tionship. One benefit of obtaining U1 with Eq.  (2) is that it does not require any prior 
knowledge such as node and graph labels, thus all data can be utilized efficiently. Also, 
when new subjects are available, U1 can be updated in an online fashion [55].

Multi‑GCN aggregator

An essential component of the propagation rule in Eq. (1) is to define a graph convo-
lution filter in the spatial or spectral domain based on an aggregator, e.g., normalized 
adjacency matrix Ã . Unfortunately for brain network analysis under the multimodal 
environments, the common ROIs used to calculate Ã [20] are not always available in 
real-world cases. To address this issue, we notice that the i-th row of U1 encodes the 
weights for the i-th node in the projection UT

1 Xms . Hence, by selecting the important 
columns of U1 according to the singular values [28], we can use the truncated U1 and 

(2)
min

Cms ,U1,U2

M∑
m=1

S∑
s=1

�Xms −U1CmsU
T
2 �

2
F

s.t. U
T
1 U1 = I and U

T
2 U2 = I

(3)
min

C,U1,U2

�X − C ×1 U1 ×2 U2�
2
F

s.t. U
T
1 U1 = I and U

T
2 U2 = I
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K-Nearest Neighbor (KNN) graph to define an undirected adjacency matrix to facili-
tate the cross-modality learning for multiplex GCNs. To be specific, we identify the 
set of nodes Ni that are neighbors to the node vi using KNN and connect vi and vj if 
vi ∈ Nj or if vj ∈ Ni . Mathematically, we define the adjacency matrix A [20] as:

where ui is the i-th row of truncated U1 , and σ is the kernel width parameter. Then we 
can substitute Ã = A + I with d̃ii =

∑
j ãij in Eq. (1).

For simplicity, let us consider the first layer of Eq. (1) with H(0)
ms = Cms as input based 

on Eq. (2), and let Â = D̃
− 1

2 ÃD̃
− 1

2 , then in our case, the propagation rule of each input 
feature matrix Cms is:

where both U2 and the shared weight matrix W(0) are used for feature extraction, and 
W

(0) is obtained in an end-to-end fashion, thus in practice, U2 and W(0) can be com-
bined to save some computing time. According to the symmetry of Â , we can rewrite 
Eq. (5) as:

where ×i denotes the i-th mode product. Rearranging Eq.  (6) in the tensor form, the 
propagation rule for all graphs at the l-th layer is formulated as

where H(0) = C and H(:, :,m, s) = Hms.

Modality pooling and prediction

For subject s with M modalities, the final output of Eq.  (7) are M feature matrices 
{H

(L)
1s , · · · ,H

(L)
ms , · · · ,H

(L)
Ms} , where H(L)

ms ∈ R
N×Dout corresponds to the m-th modality of 

subject s in the L-th layer, and Dout represents the output feature size. To integrate infor-
mation of all M modalities, we add an additional modality pooling layer by introducing 
a 1D trainable modality importance weight α = {α1, · · · ,αm, · · · ,αM} . The final feature 
embedding matrix Fs ∈ R

N×Dout for the s-th subject is calculated as a weighted combina-
tion of all modalities by

Notice that when all elements α are the same, then Eq. (8) boils down to the simple 
average pooling strategy used by the multi-view GCN (MVGCN) [20]. Leveraging ten-
sor representation and the propagation rule in Eq. (7), we can write Eq. (8) as a straight-
forward and self-explanatory equation

(4)aij =

{
exp(−

�ui−uj�
2

2σ 2 ) if vi ∈ Nj or vj ∈ Ni,

0 otherwise.

(5)H
(1)
ms = σ(ÂCmsW

(0)) = σ(ÂU
T
1 XmsU2W

(0))

(6)H
(1)
ms = σ(Cms ×1 Â

T ×2 W
(0)T )

(7)H
(l+1) = σ(H(l) ×1 Â

T ×2 W
(l)T )

(8)Fs =

M∑

m=1

αmH
(L)
ms
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where Fout ∈ R
N×Dout×S is the output feature embeddings for all S subjects with 

Fout(:, :, s) = Fs . From the perspective of transform-domain techniques [56], Â , W and 
α are transform matrices along the first, second and third dimension of H , and the acti-
vation function in Eq. (10) can be regarded as a threshold operator that filters out small 
and unimportant coefficients. Furthermore, if our model contains only one GCN layer 
with L = 1 , then Fout in Eq. (9) can be obtained by

Our model is efficient because it avoids directly operating on long vectors and con-
tains only a few trainable parameters. Therefore, it can be effortlessly extended to large 
brain network datasets with more modalities.

Algorithm 1 Tensor-based multi-GCN (TGNet)

Finally, a fully connected network (FCN) with softmax is applied to the feature embed-
dings Fout for classification. It computes the probability distribution over the labels:

where wk is the weight vector of the k-th class, and fs is the vectorized output feature 
embedding of subject s obtained from Fout(:, :, s) . Algorithm  1 summarizes the main 
steps of the proposed TGNet model.

Experiments
Datasets and preprocessing

Our method is evaluated on four real-world neuroimaging datasets containing multi-
ple modalities. Potential confounders such as age and gender were carefully addressed 
during the collection and preprocessing stages, ensuring balanced distributions across 
groups. Furthermore, consistent image acquisition procedures were applied across all 
datasets to maintain uniformity. Table 1 provides the statistics for the three real-world 
datasets, which are briefly introduced below. Additional experiments conducted on the 
ADNI dataset are provided in the supplementary materials for further validation, due to 
space constraints.

(9)Fout = σ(H(L−1) ×1 Â
T ×2 W

(L−1)T )×3 α
T

(10)Fout = σ(C ×1 Â
T ×2 W

T )×3 α
T = σ(X ×1 (U1Â)T ×2 (U2W)T )×3 α

T

(11)p(ys = j|fs) =
exp(wT

j fs)∑K
k=1 exp(w

T
k fs)

,
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Human Immunodeficiency Virus Infection (HIV): This dataset was collected from 
the Early HIV Infection Study at Northwestern University, across both fMRI and DTI 
modalities [57]. We follow the standard procedure to preprocess the dataset [58]: Here, 
we use the DPARSF toolbox1 to process the fMRI data. We realigned all images to the 
first volume, performed the slice timing correction, and normalized them to the stand-
ard MNI template. The normalized images were spatially smoothed with an 8-mm 
Gaussian kernel. The final whole-brain networks for each subject were created individu-
ally by parcellating the brain into 90 cerebral regions (excluding 26 cerebellar regions) 
and computing pairwise connectivity over correlation coefficients.

Bipolar Disorder (BP): This dataset was collected from the UCLA Ahmanson-Love-
lace Brain Mapping Center and includes 52 bipolar I subjects in euthymia and 45 healthy 
controls with matched age and gender, across both fMRI and DTI modalities [59]. The 
resting-state fMRI data was acquired on a 3T Siemens Trio scanner using a T2∗ echo 
planar imaging (EPI) gradient-echo pulse sequence with integrated parallel acquisition 
technique (IPAT) and DTI data were acquired on a Siemens 3T Trio scanner. The brain 
networks were constructed using the functional connectivity (CONN) toolbox2  [60]. 
The raw EPI images were first realigned and co-registered, after which we performed 
the normalization and smoothing. Then the confound effects from motion artifact, 
white matter, and CSF were regressed out of the signal. Finally, the brain networks were 
derived using the pairwise BOLD signal correlations based on the 82 labeled Freesurfer-
generated cortical/subcortical gray matter regions.

Parkinson’s Progression Markers Initiative (PPMI): This dataset was obtained from 
the Parkinson’s Progression Markers Initiative (PPMI) database3 with raw MRI and DTI 
images. We preprocessed the MRI acquisitions on 718 subjects as follows. T1-weighted 
MRI data was acquired using the ADNI-2 sequence, and processed using the Free-
Surfer4, followed by [61]. For DTI data, each subject’s raw data were aligned to the b0 
image using the FSL5 eddy-correct tool to correct for head motion and eddy current dis-
tortions. 84 ROIs is parcellated from T1-weighted MRI using Freesufer. Based on these 
84 ROIs, we reconstruct three types of brain connectivity matrices for each subject, 

Table 1 Details of three datasets used in the experiments

Dataset Feature size Modality Class Sample size

HIV 90 × 90 × 2 fMRI & DTI Healthy 35

Patient 35

BP 82 × 82 × 2 fMRI & DTI Healthy 45

Patient 52

PPMI 84 × 84 × 3 PICo & Hough Healthy 149

& Probtracx Patient 569

1 http:// rfmri. org/ DPARSF
2 http:// www. nitrc. org/ proje cts/ conn
3 http:// www. ppmi- info. org/ data
4 https:// surfer. nmr. mgh. harva rd. edu
5 http:// www. fmrib. ox. ac. uk/ fsl

http://rfmri.org/DPARSF
http://www.nitrc.org/projects/conn
http://www.ppmi-info.org/data
https://surfer.nmr.mgh.harvard.edu
http://www.fmrib.ox.ac.uk/fsl
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using the following three whole-brain probabilistic tractography algorithms: Probabilis-
tic Index of Connectivity (PICo), Hough voting and Probtracx [61].

Baselines and metrics

To demonstrate the effectiveness of our TGNet model, we compare it against the follow-
ing thirteen baseline methods for disease classification using the multimodal HIV, BP, 
and PPMI datasets.

• M2E [33]: It is a tensor-based method for multimodal feature extraction. We apply it 
to obtain the embeddings of all subjects and then perform classification with FCN.

• MIC [30]: It first uses the kernel matrices to form an initial tensor across multiple 
modalities, and then CP decomposition is employed to extract feature representation 
for each subject. We perform classification using the same settings as above.

• MPCA [28]: We concatenate all data information into a 4D tensor and then apply 
MPCA to extract feature embeddings for each subject across modalities and indi-
viduals. We then perform classification using these features.

• MK-SVM [62]: It is a multiple kernel learning method dependent on the SVM clas-
sifier, where the graph kernel is calculated as the weighted sum of single modality 
kernels.

• 3D-CNN [63]: For each subject, we concatenate multimodal brain networks into 3D 
data. We then apply 3D-CNN for joint feature extraction and classification in an 
end-to-end manner.

• GAT  [64]: Similar to GCN, we vectorize the input tensor data into a 2D feature matrix 
X ∈ R

MN 2×S , and apply the graph attention mechanism.
• GCN [36]: We reshape the 4D tensor data X ∈ R

N×N×M×S into a 2D feature matrix 
X ∈ R

MN 2×S , where each column corresponds to the vectorized representation of 
3D multimodal data X (:, :, :, i) , in this case, each vectorized graph can be viewed as a 
node, and the GCN model can be directly applied.

• DiffPool [65]: It is a hierarchical GCN method equipped with differentiable pool-
ing for graph classification. Since it can only handle single modal data, we apply it to 
each modality independently and report the best result.

• MVGCN [20]: It is a multi-view GCN method, which requires prior knowledge of 
common geometric coordinate information to define shared feature space. Typically, 
such information is not available in multimodal data, thus we consider obtaining the 
shared feature space with the average of all brain networks across modalities and 
subjects, and then feed it into the MVGCN architecture.

• MVS-GCN [21]: It uses a shared graph convolutional layer to extract multi-view 
graph data features of subjects for disease classification. We use the different modal 
data of the subject as different views to apply MVS-GCN for feature extraction and 
classification.

• GCN-SVM [24]: It is a method that uses GCNs to extract features of each ROI of the 
subject and uses SVM for disease classification. For each subject, we combine mul-
timodal data into the raw representation of ROI and apply GCN-SVM for feature 
extraction and classification.
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• MaskGNN [22]: It is a multi-view GNN method that draws upon the connectivity 
information from each view. It integrates data from different views or modalities by 
amalgamating them at the node level. The combined data are then fed into a GNN, 
where a masking mechanism is applied to identify the connections most critical for 
the model’s predictions.

• SGCN [23]: It is an interpretable GCN method that introduces the sparse regional 
and connective important probabilities in the brain network. We apply these sparse 
important probabilities to multimodal data and learn the graph-level embedding for 
graph classification.

In order to measure the performance of all compared methods, we use Accuracy and 
AUC (Area Under the ROC Curve) scores as indicators of classification quality, which 
are two widely used evaluation metrics for disease classification in medical fields. Typi-
cally, the larger the values, the better the classification performance.

Implementation details

For all our experiments, we use binary cross-entropy loss with Adam optimizer  [66] 
to train the deep models. We empirically set the learning rate to 0.001 and the epoch 
to 50 iterations. We vary the dropout rate of the graph embedding layer from 0 to 0.5, 
and the number of TGNet layers from {1, 2, 3} . In our proposed model, there are three 
major parameters, namely the batch size B in the training stage, the neighbor number 
of the K nearest neighbors when building the KNN graph, and the output feature size 
Dout in GCNs. We apply the grid search to determine the optimal values of these three 
parameters. In particular, we empirically select Dout from {10, 30, 50, 70, 90, 110} , and 
K and B from {2, 4, 6, 8, 10, 12} . We also carefully tune the parameters of all compared 
methods according to the authors’ suggestions using the same data splits, in which the 
training, validation and testing set are set as the ratio of 8 : 1 : 1. To avoid randomness, 
the results are averaged based on ten independent runs. All experiments are performed 
on an 8-core machine with 16GB RAM. The deep learning backend is Tensorflow-GPU 
2.2.0 with Python 3.6.

Results and discussions

To evaluate the effectiveness of our model, we conducted a series of experiments on 
multimodal brain network analysis. The experiments cover various aspects, including 
the performance comparison with state-of-the-art methods (“Model comparison”  sec-
tion), the effects of multimodal learning (“Effectiveness of multimodal learning”  sec-
tion), the ablation study on the impact of cross-modality bridging and weighted modality 
pooling strategies (“Ablation study”  section), and sensitivity of the hyperparameters 
(“Hyperparameter analysis”  section), the quality of graph embeddings (“Embedding 
visualization” section).

Model comparison

Table 2 presents the results of all compared methods on HIV, BP, and PPMI datasets. 
It is important to note that the first two datasets used in our experiments consist of 
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fewer than 100 subjects, resulting in high standard deviations in the outcomes. The 
key observations from Table 2 are as follows.

Overall, the proposed TGNet demonstrates notable improvements in classification 
accuracy across all datasets. Specifically, TGNet achieves average accuracy improve-
ments of 2.82%, 1.61%, and 0.84% on the HIV, BP, and PPMI datasets, respectively, 
compared to the second-best methods. These results indicate that TGNet consistently 
outperforms other models, particularly on datasets with fewer samples where high 
variability in results is observed. To validate the significance of these performance dif-
ferences, we conducted Wilcoxon signed-rank tests, comparing accuracy and AUC 
metrics between TGNet and other models. The tests yielded p-values less than 0.05 
across all datasets, confirming that the improvements are statistically robust.

For the HIV dataset, TGNet shows a substantial accuracy improvement of 2.82% 
over MVS-GCN, demonstrating its effectiveness in integrating multimodal brain net-
works without relying on prior knowledge of geometric coordinates. Similarly, for the 
BP dataset, TGNet achieves a 1.61% increase in accuracy over SGCN, highlighting its 
superior capability to handle multimodal data integration and capture complex inter-
actions between brain network modalities. On the PPMI dataset, TGNet provides a 
notable 0.84% improvement, which, although smaller, still indicates the robustness of 
the proposed method across different types of brain network data.

TGNet’s advantages over shallow tensor-based methods like M2E and MPCA 
underline the importance of effectively modeling graph structures. The shallow meth-
ods fail to capture the rich, high-dimensional relationships inherent in brain network 
data, leading to lower performance. In contrast, TGNet leverages the strengths of 
both tensor decomposition and graph convolutional networks, ensuring a more com-
prehensive representation of the data.

Compared to straightforward GCN and GAT methods, TGNet’s superiority lies 
in its joint modeling of node- and modality-level relationships. This joint modeling 

Table 2 Classification performance of different methods on HIV, BP and PPMI datasets in terms of 
average accuracy and AUC scores

Type Method HIV BP PPMI

Accuracy AUC Accuracy AUC Accuracy AUC 

Shal-
low

M2E 50.61±15.84 51.53±13.68 57.78±12.61 53.63±11.82 76.98±8.65 71.53±8.34

MIC 55.63±15.28 56.61±13.43 51.21±13.78 50.12±16.78 78.03±8.36 72.42±7.93

MPCA 67.24±11.56 66.92±12.46 56.92±13.33 56.86±13.69 81.25±6.34 72.36±7.18

MK-SVM 67.71±13.18 69.89±10.36 60.12±10.83 56.78±12.86 81.68±5.06 75.96±6.89

Deep 3D-CNN 74.31±18.81 73.53±16.41 63.33±11.21 61.62±10.26 82.24±5.32 75.65±6.11

GAT 68.58±13.51 67.31±14.32 61.31±15.04 59.93±13.54 82.28±5.95 75.19±5.57

GCN 70.16±12.54 69.94±12.91 64.44±15.71 64.24±16.45 83.10±6.01 75.33±6.79

DiffPool 71.42±14.78 71.08±15.12 62.22±12.83 62.54±13.41 82.19±6.23 72.75±2.18

MVGCN 74.29±11.27 73.75±12.63 62.22±16.83 62.64±16.89 82.54±5.15 76.48±6.69

MVS-GCN 78.57±16.66 77.50±12.94 65.00±16.03 63.70±15.31 80.28±1.41 76.54±8.03

MaskGNN 75.71±11.41 79.20±12.43 64.95±10.34 64.71±10.31 80.43±5.68 72.24±5.14

SGCN 77.14±14.09 80.47±12.67 63.89±17.24 65.18±16.73 81.09±5.17 74.78±7.69

Shal-
low + 
Deep

GCN-SVM 62.86±6.55 63.33±15.00 61.67±5.15 57.33±8.21 78.87±4.86 70.25±9.59

TGNet 
(Ours)

81.39±13.41 82.08±14.81 67.78±12.28 66.31±10.24 83.94±6.09 77.93±6.86
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avoids the pitfalls of vectorizing high-dimensional data, which can lead to the loss 
of important structural information, and preserves the multimodal tensor structure, 
ensuring that all relevant information is retained and utilized. Additionally, while 
MaskGNN enhances edge interpretability through a masking strategy, it oversimpli-
fies the interactions between modalities, limiting its ability to capture intricate cross-
modal dependencies. Similarly, GCN-SVM relies on predefined graph structures and 
K-nearest neighbors, which restricts its capacity to model complex multimodal inter-
actions. TGNet addresses these limitations by providing a more flexible and auto-
mated solution for integrating multimodal data.

Although the 3D-CNN model attempts to build multimodal representations using 
convolution and pooling layers, it falls short in explicitly considering multimodal rela-
tionships and graph structure information. This limitation leads to a noticeable perfor-
mance gap compared to TGNet. The 3D-CNN model flattens the graph representation, 
ignoring the inherent graph structure and the inter-modality connections. TGNet, on 
the other hand, encodes both the multimodal characteristics and captures the graph 
structures of the input brain networks, providing a more effective solution for multi-
modal brain network analysis.

In summary, TGNet demonstrates obvious improvements across various datasets by 
effectively combining the strengths of tensor decomposition and graph convolutional 
networks, making it a powerful tool for multimodal brain network analysis.

Effectiveness of multimodal learning

In the proposed TGNet model, multi-modal information is integrated using the simple 
and effective modality-pooling strategy. To investigate how multiple modalities affect 
the graph representation learning ability of TGNet and thus the classification quality, we 
compare TGNet with its fine-tuned single-modality counterpart on three datasets.

As results shown in Table 3, we can see that the multimodal learning strategy leads to 
certain improvements in classification performance on all three datasets. This study is 
very encouraging and valuable for multimodal brain network analysis as it suggests that 
the TGNet is able to integrate the multimodal information that is effective for classifica-
tion in multi-GCN. Another interesting observation is that our model performs better 

Table 3 Classification performance of TGNet on unimodal and multimodal brain network datasets

Method Dataset Modality Accuracy AUC 

TGNet HIV fMRI 53.61±11.88 52.31±13.63

DTI 75.71±15.12 76.08±15.61

Both 81.39±13.41 82.08±14.81
BP fMRI 57.78±12.61 51.83±10.84

DTI 64.44±13.59 63.34±15.91

Both 67.78±12.28 66.31±10.24
PPMI PICo 79.01±6.62 73.66±8.69

Hough 80.14±5.65 72.03±7.42

Probtracx 83.39±4.34 76.50±8.29

All 83.94±6.09 77.93±6.86



Page 16 of 24Kong et al. BioData Mining           (2024) 17:55 

Fi
g.

 2
 a

 V
is

ua
liz

at
io

n 
of

 m
od

al
ity

 w
ei

gh
t α

 a
nd

 (b
-c

) m
od

el
 a

cc
ur

ac
y 

vs
. d

iff
er

en
t h

yp
er

pa
ra

m
et

er
s 

of
 T

G
N

et
 o

n 
H

IV
, B

P 
an

d 
PP

M
I d

at
as

et
s



Page 17 of 24Kong et al. BioData Mining           (2024) 17:55  

with the DTI modality compared to the fMRI modality. Consequently, the DTI modality 
is assigned a higher weight in the modality pooling operator α , as illustrated in Fig. 2a.

Ablation study

In TGNet (Eq. (10)), there are two key components: U1 , which captures node-level infor-
mation through cross-modality bridging, and α , which characterizes the multimodal 
relationship via weighted modality pooling. To validate the contribution of these com-
ponents to the superior performance of our TGNet model, we conducted an ablation 
study. Table  4 compares TGNet with two variations: TGNet without U1 (TGNet−U1 ) 
and TGNet without weighted modality pooling (TGNet−α ). In TGNet−U1 , the graph 
is constructed directly from raw multimodal data without tensor decomposition. The 
results show that the introduction of the node projection matrix U1 significantly boosts 
the performance of our model. For TGNet−α , we replaced the weighted modality pool-
ing with average pooling, which affected the model’s ability to capture modality impor-
tance. Additionally, using an average pooling strategy ( α = [ 1

M , · · · , 1
M ] ), as in TGNet−α , 

results in slightly worse performance compared to automatic weighted modality pool-
ing. This could be explained by the uniform distribution of weights in average pooling, 
which fails to capture the varying importance of different modalities. In contrast, auto-
matic weighted pooling dynamically adjusts the weights based on the contribution of 
each modality, leading to a more accurate and nuanced representation of the multimodal 
data.

Hyperparameter analysis

We investigate the influence of three important parameters in our TGNet model, namely 
the number of neighbors K when building the KNN graph, the dimensions of output fea-
tures Dout produced by GCN and the batch size used for training. According to Figs. 2b-
d, we notice that the performance of TGNet is related to all three parameters, which 
should be carefully tuned based on site-specific conditions. For example, increasing the 
number of neighbors K does not guarantee improvements in classification performance, 
because most useful information is distributed in certain rows and columns, and adding 
more neighbors may introduce some noise.

Embedding visualization

The accuracy and quality of objective evaluations may be affected by the limited 
number of training and validation samples, which can make it difficult to produce 
reliable graph representations. Given this challenge, generating satisfactory represen-
tations for subsequent analysis is a critical task in graph-based problems. To qualita-
tively assess the effectiveness of TGNet, we examine two types of embeddings in our 

Table 4 Comparison of classification performance for three TGNet variants

Dataset TGNet−U1 TGNet−α TGNet

HIV 75.71±14.33 80.81±12.04 81.39±13.41
BP 63.33±12.52 66.68±10.53 67.78±12.28
PPMI 82.21±7.18 83.52±6.61 83.94±6.09
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study: node embeddings ( U1 ) and graph embeddings ( fs ). Node embedding refers to 
the representation of individual brain regions (nodes) within the networks, learned 
through tensor decomposition, capturing localized structural information. On the 
other hand, graph embedding refers to the representation of the entire brain net-
work, learned through GCNs, encapsulating the relationships between all nodes to 
reflect the global properties of the network. Both types of embeddings provide valu-
able insights-node embeddings allow us to study the fine-grained brain connectivity 
patterns, while graph embeddings offer a more holistic view of brain network struc-
ture. Figure 3 illustrates these differences by visualizing node and graph embeddings 
obtained by TGNet on HIV, BP, and PPMI datasets. The upper panels show the node 
embedding features for the entire population, where the color intensity reflects the 
activity levels in each brain region. The lower panels show the graph embedding fea-
tures for healthy controls (green bars) and patients (red bars) separately. We have the 
following observations:

• From the upper panels, the embedded neuroanatomy learned from the HIV, BP, 
and PPMI datasets shows notable differences, with certain regions playing a more 
significant role in distinguishing the diseases. The intensity values in the node 
embeddings represent the strength of features derived from neuroimaging data, 
with higher values corresponding to stronger regional connectivity and lower val-
ues indicating weaker connectivity. For example, the highlighted yellow regions 
(e.g., left parietal lobes and right frontal lobes) in the HIV data suggest that these 
regions are crucial for characterizing brain activity in HIV patients. In contrast, 
the blue regions (e.g., postcentral cortex and occipital cortex) with low-intensity 
values indicate decreased connectivity in HIV-infected individuals, which aligns 
with clinical findings in the medical literature [67]. These decreased connectivity 
patterns align with the reduced communication efficiency often observed in neu-
rodegenerative and neuropsychiatric disorders. For BP, we observe that the pari-
etal lobes are impaired in bipolar disorder, which is also in line with previous stud-
ies [68, 69]. For PPMI, there are more highlighted yellow regions than HIV and BP, 
reflecting the complex underlying causes of Parkinson’s disease.

• From the lower panels, it is evident that the graph embeddings for healthy con-
trols (green bars) and patients (red bars) differ significantly, demonstrating that 
TGNet effectively extracts discriminative representations for these two groups. 
Specifically, the graph embeddings for healthy controls are predominantly posi-
tive, suggesting stronger and healthier brain network structures. In contrast, the 
embeddings for patients display more negative values, indicating disrupted or 
weaker connectivity. The predominantly positive graph embeddings in healthy 
controls suggest greater global brain network integrity, which is consistent with 
well-established patterns of healthy brain connectivity. This reflects more cohesive 
and efficient communication between brain regions in healthy individuals. In con-
trast, the greater number of negative values in the graph embeddings of patients 
points to disrupted or weakened connectivity across the brain network, a feature 
commonly observed in neurodegenerative conditions such as HIV and Parkinson’s 
disease. These disruptions in network structure may correspond to reduced com-
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munication efficiency and impaired functional integration between brain regions, 
underscoring the pathological impact of these diseases.

Moreover, we apply t-SNE [70] to visualize the graph embeddings learned by TGNet 
and compare them with those from GCN and MVGCN on small-scale HIV and BP data-
sets. As shown in Fig. 4, it can be seen that our TGNet model learns a higher quality of 
graph embeddings where the graphs are well-clustered according to their labels.

From the visualizations in Figs. 3-4, it is evident that TGNet effectively captures both 
local and global properties of the brain networks, leading to clear separations between 
healthy controls and patients across all datasets.

Conclusions
In this paper, we have presented a novel tensor-based graph convolutional network 
(TGNet) framework for multimodal brain network analysis. It advances prior works by 
showing how tensor and GCN techniques can be combined together to effectively model 
multimodal graph-structured data for joint embedding and classification, without using 
any prior knowledge of the data. Experimental results on four challenging multimodal 
brain network datasets (HIV, Bipolar, PPMI and ADNI) showed that our approach 
achieves superior performance for feature embedding and classification, compared with 
state-of-the-art methods.

Despite these advantages, TGNet has certain limitations. First, TGNet assumes cer-
tain dependencies between modalities, which may limit its performance in cases where 
cross-modal associations are weak or inconsistent. This limitation becomes more evi-
dent in scenarios where modality complementarity is insufficient or where data modali-
ties lack consistency. Furthermore, the complexity of tensor decomposition and GCNs 
may reduce the interpretability of the model. In applications where clear biological inter-
pretations are required, TGNet’s structure may make it challenging to extract straight-
forward explanations.
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