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Introduction
Alzheimer’s disease (AD) is one of the most common forms of dementia, and it is asso-
ciated with substantial failure of organs and mental health issues. In the United States, 
nearly 10% of the population aged 65 and older has been diagnosed as AD and projec-
tions the total number of cases is projected to indicate that there will reach 13.8 mil-
lion cases by 2060 [1]. The heritability of AD is estimated to be between 60% and 80% 
[2]. Therefore, much work has been done in genetic association studies seeking to deter-
mine the genetic architecture of AD since the early 1990s, followed by several large-scale 
genome-wide association studies (GWASs) and meta-analyses [3–5]. It is expected that 
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Abstract
Alzheimer’s disease (AD) is a highly heritable brain dementia, along with substantial 
failure of cognitive function. Large-scale genome-wide association studies (GWASs) 
have led to a set of SNPs significantly associated with AD and related traits. GWAS 
hits usually emerge as clusters where a lead SNP with the highest significance is 
surrounded by other less significant neighboring SNPs. Although functionality is 
not guaranteed even with the strongest associations in GWASs, lead SNPs have 
historically been the focus of the field, with the remaining associations inferred to be 
redundant. Recent deep genome annotation tools enable the prediction of function 
from a segment of a DNA sequence with significantly improved precision, which 
allows in-silico mutagenesis to interrogate the functional effect of SNP alleles. In 
this project, we explored the impact of top AD GWAS hits around APOE region on 
chromatin functions and whether it will be altered by the genetic context (i.e., alleles 
of neighboring SNPs). Our results showed that highly correlated SNPs in the same LD 
block could have distinct impacts on downstream functions. Although some GWAS 
lead SNPs showed dominant functional effects regardless of the neighborhood SNP 
alleles, several other SNPs did exhibit enhanced loss or gain of function under certain 
genetic contexts, suggesting potential additional information hidden in the LD 
blocks.
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these increasing findings will better delineate the pathways underlying disease. Yet, there 
remains a substantial gap in estimated heritability. Only 3–17% of heritability can be 
explained by current large-scale GWAS findings [6, 7].

GWAS hits usually emerge as clusters where a lead SNP with the highest significance 
is surrounded by other less significant neighboring SNPs. This observation of hits in 
clusters aligns with the model of “haplotype blocks.” That is, genomic regions are inher-
ited together as sets (i.e., haplotype blocks) and nearby variants within the blocks can 
be highly correlated, known as linkage disequilibrium (LD) [8–10]. Although function-
ality is not guaranteed even with the strongest associations detected in GWASs, lead 
SNPs have been historically the focus of the field, treating the remaining associations 
as redundant [11]. In polygenic risk analysis where GWAS summary statistics are used 
to estimate the personal genetic risk of AD, the risk effect of neighboring SNPs is com-
monly excluded through pruning or clumping [12, 13]. Lead SNPs have also been widely 
used to assist with drug discovery since drug targets with genetic evidence of disease 
association are more likely to succeed [14]. Yet, lead SNPs identified from GWASs have 
not been consistent but rather nearby the same neighborhood [15]. The susceptibility 
locus in AD, reported as the nearest genes to lead SNPs are sometimes different even for 
the same SNP [15]. Taken together, information harbored in the neighborhood of lead 
SNPs may not necessarily be redundant. Focusing only on the lead SNPs will likely limit 
our understanding of genetic factors in AD [11]. Recent advancements in fine-mapping 
methods have recognized this limitation and strive to refine GWAS peak regions for 
causal variants linked to observed associations. Nevertheless, these methods continue to 
operate under the assumption of individual variant effects rather than considering their 
interactions [16, 17].

Advances in deep learning models have led to significant improvement in predict-
ing the function of DNA sequence segment, such as transcription factor binding sites 
(TFBS) and histone marks [18, 19]. These models attained high accuracy in predict-
ing the underlying chromatin marks in a tissue-specific manner [20]. Through in-silico 
mutagenesis, one can also examine how each individual allele affects the predicted func-
tion of the input DNA sequence. In this paper, we will utilize the recent deep learning 
model called ExPecto to investigate the downstream functional changes associated with 
the top GWAS hits in AD [18, 19]. In particular, we aim to explore: (1) What are the 
functional changes associated with AD lead SNPs? (2) Is there any difference in func-
tional effect between lead SNPs and others in the same LD block? and (3) Will the 
functional effect of AD lead SNPs will be affected by the genetic context (i.e., alleles of 
neighboring SNPs)? Given that the genetic context (i.e., allele combination of each sub-
ject) is largely unknown, we employed a synthetic analysis of genetic context, examining 
all possible allele combinations within a defined window. To reduce the computational 
burden, we concentrated on top hits in the APOE region, which carry the highest genetic 
risk and are expected to have substantial downstream functional implications.

Methods
GWAS candidate loci

AD risk SNPs were extracted from a large-scale genome wide association study (GWAS), 
the International Genomics of Alzheimer’s Project (IGAP). We chose IGAP over more 
recent larger-scale GWAS studies because the latter often include a substantial number 
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of proxy dementia cases, potentially diluting the specificity of identified variants for 
AD and thereby reducing the explained heritability [6]. IGAP GWAS was performed 
with the imputed genotype of 11,480,632 single nucleotide poly- morphisms (SNPs) 
from 21,982 Alzheimer’s disease patients and 41,944 cognitively normal controls. It is 
a combination of four consortia, namely, the Alzheimer Disease Genetics Consortium 
(ADGC), the European Alzheimer’s disease Initiative (EADI), the Cohorts for Heart and 
Aging Research in Genomic Epidemiology Consortium (CHARGE), and Genetic and 
Environmental Risk in AD Consortium Genetic and Environmental Risk in AD/Defin-
ing Genetic, and the Polygenic and Environmental Risk for Alzheimer’s Disease Con-
sortium (GERAD/PERADES) [21]. In this study, we focused on the top 100 significant 
SNPs with the smallest p-value in IGAP. In addition, neighboring SNPs located within 
the same linkage disequilibrium (LD) block of those top hits were also included, total-
ing to 238 variants. LD block information was estimated from the 1000 Genome Project 
using European population [22].

Deep genome annotation for allele-specific function

AD risk variants from GWASs are located predominantly in non-coding regions of 
the genome [23–25]. Only 7 out of the top 100 GWAS hits SNPs present in the coding 
region, with the rest in UTR, intronic regions, and other genetic components as detailed 
in Appendix B. Therefore, gene regulation is speculated to be one driving factor for 
Alzheimer’s disease. Over the last decade, there has been significant progress in predict-
ing regulatory marks from raw DNA sequences using deep learning models [18, 19, 26, 
27]. More specifically, these models can generate the likelihood of functions (e.g., DNase 
peak or binding of a specific transcription factor) with a given DNA sequence segment. 
Allele-specific effect can be estimated by comparing the functional likelihood of two 
input sequences carrying major and minor allele respectively. For example, for DNase 
peak, if the likelihood generated from a sequence with major allele is much higher than 
that from a sequence with minor allele, this suggests a potential loss of DNase peak in 
minor allele carriers.

ExPecto is a pre-trained deep genome annotation model built on the data from the 
ENCODE and Roadmap Epigenomics projects [18, 19, 28, 29]. As input, a short DNA 
sequence centering the allele of interest is used to predict chromatin profiles, including 
transcription factor binding sites, histone marks, and DNase peaks across various tissues 
and cell types. In other words, it predicts whether any of those chromatin features exist 
in the input sequence. Given that the majority of GWAS findings are from non-coding 
regions, these chromatin profiles could reveal the critical role of gene regulation in com-
plex diseases. ExPecto was trained to predict the likelihood of 2002 chromatin features 
and outperformed gkm-SVM, which was then the best method for chromatin immuno-
precipitation–based TF binding prediction, with median AUC ≥ 0.95 across all chroma-
tin features. Source code for the entire pipeline is freely accessible on GitHub website 
(https://git hub.com/Pra doVarathan/ Multi_Sp ecto).

Allele-specific functions without genetic context

We first applied ExPecto to evaluate the allele-specific function of candidate SNPs with-
out considering the genetic context, i.e., all the neighboring SNPs in the input sequence 
set to major allele. The input for ExPecto is a 2000 bp DNA sequence, centering around 
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the SNP of interest. It was generated using the Hg38 Genome assembly as the reference 
genome, which was used to train the ExPecto model. For each candidate SNP, two input 
sequences were generated: (1) one 2000 bp reference sequence directly extracted from 
the reference genome, 999 bp upstream and 1000 bp down- stream. All the SNPs in the 
reference sequence were set to major alleles taken from IGAP dataset. (2) Another alter-
nate sequence was generated by replacing the center SNP with minor allele taken from 
IGAP dataset. For both reference and alternate sequences, ExPecto predicted the func-
tional likelihood of all chromatin features (Fig. 1 (a)). Log odds were derived from the 
predicted functional likelihood, and the log odds change between reference and alter-
nate sequences reflected the predicted functional effect of the center SNP [18].

Log (OR) =
∣∣∣∣log

P (reference)
1 − P (reference)

− log
P (alternate)

1 − P (alternate)

∣∣∣∣ (1)

Reversed reference and alternate sequences were also examined but the predicted chro-
matin profiles were almost identical, so the results were not included (Supplementary 
Fig. 1). In addition, with a focus on Alzheimer’s disease, we manually screened all 2002 
chromatin features in ExPecto and included only 128 features highly relevant to brain 
(Appendix A). That is, these chromatin features are either measured from brain tis-
sues or purified brain specific cell types like neuron, microglial and astrocyte. Mono-
cyte is also included due to its close relationship with brain [30]. In addition, we chose 
to include glioblastoma cell line since previous studies showed a significant overlap of 
genetic pathways between AD and glioblastoma/cancer [31, 32]. Although we do not 
fully understand the relationship between the top AD risk variants and glioblastoma yet, 
we seek to understand how these variants could possibly impact shared pathogenesis.

Fig. 1 (a) Brief steps of ExPecto to estimate the functional impact of the allele of interest (center SNP). The shadow 
inside the circle indicates the likelihood of one chromatin function given a specific input sequence. DHS: DNase I 
hypersensitive site, TFBS: Transcription factor binding site. (b) Input sequences used to estimate the allele-specific 
chromatin effect without genetic context (left) and with genetic context (right)
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Allele-specific effect with genetic context

Next, we tested the influence of the neighboring SNPs on the allele-specific functional 
effect. That is, the alleles of neighboring SNPs within 2000 bp flanking region will change 
the functional effect of the center SNP, e.g., enhancing or weakening the binding activity 
of a specific transcription factor. Toward this, we generated a set of alternate sequences 
with in-silico mutagenesis, where the center SNP remained minor allele, but neighbor-
ing SNPs selectively took minor alleles. We tested all possible combinations of major and 
minor alleles for N neighboring SNPs (2N combinations in total) and examined whether 
any of the combinations would cause significant changes in the functional effect of the 
central SNP (Fig.  1 (b)). Since the input sequence of ExPecto model is only 2000  bp, 
there are only a limited number of SNPs within this window and thereby the computa-
tional feasibility of this step was ensured. Finally, we used the ADNI genotype dataset to 
validate the epistasis effects of those combinations in AD, which was downloaded from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

E value generation

To evaluate the significance of our findings, we randomly selected 1,000,000 SNPs from 
chromosomes 1–22 and examined their allele-specific chromatin effect on all 128 brain-
related chromatin features. As such, for each chromatin feature, we obtained a distribu-
tion of log odds ratio changes. On top of that, we estimated the empirical p-values of all 
log odds ratios obtained using sequences around AD risk SNPs. Following [19], E-value 
was determined by the product of the log odds change (relative change) and the absolute 
change, and was formulated as follows:

∣∣∣∣log
P (reference)

1 − P (reference)
− log

P (alternate)
1 − P (alternate)

∣∣∣∣ ∗ |P (reference) − P (alternate)|  (2)

Results
Allele-specific effect without genetic context

After examining each individual AD risk SNP and its neighborhood SNPs, we found 8 
of them with noteworthy log odds ratio changes in brain-related chromatin features. Six 
of those are among the top 100 AD GWAS candidate SNPs and two are in the 2000 bp 
neighborhood of those top SNPs, with one as GWAS significant but not the other. 
Among the top AD GWAS SNPs, sequences with minor allele of rs157585 was predicted 
to be associated with the prominent loss of function for DNase I hypersensitive sites 
(DHS) in glioblastoma cells, normal human astrocyte (NHA) and monocyte cells, and 
also histone marks in normal human astrocytes (Fig.  2 (a)). Another top AD GWAS 
variant, rs74579864, was predicted to provide strong gain of function in acetylation of 
histones 2 and 3 at various positions in H1-Derived Neuronal Progenitor cells (NPC). 
rs35396326 is also strongly associated with acetylation of histones 2 and 3 in H1-derived 
Neuronal Progenitor cells, but at different positions and in a negative way. Another 
prominent feature predicted to have a spike in the log odds ratio was from glioblastoma 
CTCF factor in rs75765623, located in the first intron of NECTIN2 gene. This variant 
is neither among the top GWAS SNPs nor a significant variant, but with the highest 
log odds ratio change (e-value = 0.0458). It is located only 70  bp downstream of a sig-
nificant AD GWAS hit rs12462573. Yet, the predicted chromatin effect associated with 
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rs12462573 was minimal and negligible. When examined in the European population, 
we did not observe strong correlation between these two SNPs despite their closeness 
in physical location (R2 = 0.004). It is therefore worth noticing that SNPs with significant 
p-value (i.e., lead SNPs) do not necessarily have the strongest downstream functional 
effect. Actual functional effect could come from less significant variants located in the 
neighborhood of top hits. Finally, we compared our discoveries with potential causal 
variants identified through fine mapping [33]. However, there is no overlap of our SNPs 
and causal SNPs prioritized through fine mapping of IGAP GWAS results, indicating 
possible additional functional implications due to genetic interactions.

Highly correlated SNPs within LD block showed distinct allele-specific effect

For those 8 SNPs predicted with significant allele-specific functional effect, we identi-
fied SNPs in the same LD block using LDLink [34] (Supplementary Fig. 2) and compared 
their functional effects predicted by ExPecto Among 8 SNPs, 5 of them have highly cor-
related SNPs (corr ≥ 0.8) located in the same LD block. Shown in Fig. 3 is the comparison 
of predicted allele-specific functional effect across highly correlated SNP groups. Each 
panel is a group of correlated SNPs in the same LD block and the first row is the SNP 
predicted with significant allele-specific effect in the above section. Interestingly, these 
highly correlated variants seldom had similar predicted chromatin profiles. For example, 
rs74579864, rs4803761 and rs4803762 are highly correlated (R2 = 0.956 and R2 = 0.978 
respectively). However, minor allele in rs74579864 was predicted to increase the likeli-
hood of histone marks in H1-derived neuronal progenitor cultured cells, but not those 

Fig. 2 Top chromatin features affected by GWAS SNPs and their neighboring SNPs without genetic context. That 
is, only the center SNP in the input sequence takes minor allele. SNPs with log odds change greater than 1 in at 
least one chromatin features were included in the figure. Red indicates a positive log odds ratio changes and 
blue indicates a negative log odds ratio change, suggesting gain and loss of function respectively. The variants in 
bold are among the top 100 AD GWAS SNPs. #: significant variants in the neighborhood of the top GWAS SNPs. *: 
e-value < 5e-2, **: e-value < 5e-3. ***: e-value < 1e-6. NHA: normal human astrocytes, H1-NPC: H1-derived neural 
progenitor cells
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of rs4803761 and rs4803762. Similarly, sequences with minor allele in rs157585 were 
predicted with strong negative effect in DNase hypersensitive sites in monocytes CD14 
and glioblastoma cells, neither of which was observed for its highly correlated neighbor 
rs157584 (R2 = 0.98). Taken together, our findings suggest that caution should be exer-
cised when pruning LD blocks to narrow down the number of SNPs, which will likely 
result in a loss of information and significantly biased results.

Allele-specific effect with genetic context

For all the top 100 AD GWAS SNPs, we additionally examined the influence of genetic 
context on the allele-specific functional effect. That is, whether the alleles of neighbor-
ing SNPs within the 2000  bp window will affect the predicted functional effect of the 
center SNP. As shown in Fig. 1 (b) on the right, input sequences centered around each 
SNP were modified by varying the allele of neighboring SNPs within the 2000 bp win-
dow (i.e., major to minor allele). As such, we were able to identify 21 SNPs predicted 
with strong effect on chromatin features (log odds ratio change ≥ 1, e ≤ 0.05). Predicted 
chromatin effects of these input sequences were compared with allele-specific effects 
without considering the genetic context. Ultimately, four variants were observed with 
dominant effect, including rs157585, rs184017, rs114536010, and rs74579864. For each 
of these SNPs, input sequences carrying their minor allele were observed to have very 
similar functional effects on chromatin features regardless of the genetic context in the 
2000 bp window. Three SNPs showed notable and significant log odds ratio changes (≥ 1, 
e ≤ 0.05), indicating the importance of the genetic context for SNP annotation.

Fig. 3 Highly correlated variants (R2 ≥ 0.8) of rs157585, rs184017, rs74579864, rs114536010 and rs35396326 from 
the same LD block were predicted to have different functional effects
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We also observed notable and significant log odds ratio changes (≥ 1, e ≤ 0.05) for vari-
ants rs1305062, rs2972559 and rs584007, which suggests that their predicted functional 
effect could be dependent on the allele of neighboring SNPs. For sequences carrying 
the minor allele in rs1305062, a significant loss of function was predicted for the CTCF 
binding sites in glioblastoma cells, which became even worse when the input sequence 
also carried the minor allele of rs141864196 (Fig. 4 (a)). A similar effect was observed for 
rs2972559, which in combination with rs4802241 led to a more significant loss of func-
tion in the predicted CTCF binding sites in glioblastoma cells. Interestingly, the chro-
matin effect observed for rs2972559 (as a top GWAS hit) alone was very weak (log odds 

Fig. 4 (a) Distribution of the log odds ratio change in CTCF binding in glioblastoma cells for input sequences 
centered around rs1305062. (b) Distribution of log odds change of DNase I hyper- sensitive sites in Normal Human 
Astrocytes for input sequences centered around rs584007. (c) Distribution of the log odds ratio changes of CTCF 
binding in glioblastoma cells for input sequences centered around rs2972559. (d) Proportion of subjects develop-
ing AD in the ADNI cohort grouped by rs584007/rs59325138 genotype. (e) Proportion of subjects developing AD 
in the ADNI cohort grouped by rs2972559/rs4802241 genotype
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ratio change le 0.5) (Fig. 4 (c)). In Fig. 4 (b), minor allele in rs584007 was predicted asso-
ciated with the loss of DNase I hypersensitive sites in normal human astrocyte derived 
cells. This loss of function could become even more evident with the presence of minor 
allele in another SNP rs59325138, which had little chromatin effect as predicted by 
ExPecto.

We further investigated the interaction effect of these three pairs of SNPs in the ADNI 
cohort [35]. Shown in Fig.  4 (d) and (e) are the proportion of subjects that ultimately 
developed AD in each genotype group (0 for no minor allele and 1 for presence of minor 
allele). rs141864196 was not reported due to its missing genotype in the ADNI. For the 
first pair of SNPs rs584007 (GWAS p = 1.056e-82, beta=-0.37) and rs59325138 (GWAS 
p = 6.945e-89, beta = -0.38), ratio of subjects developing AD decreases with the pres-
ence of minor allele, indicating their potential protective effect. Both SNPs are located 
within the LD block of lead SNP rs1081105 (i.e., top 100 GWAS hits). Combined with 
their predicted chromatin effect, it is speculated that deactivated DNase hypersensitive 
sites in astrocyte cells may have a protective role in AD development. When tested in 
PLINK using genotype data, these two variants also showed significant epistasis effect 
(p < 1e − 4). For the second pair of SNPs, only rs2972559 is a significant AD risk SNP in 
GWASs but not rs4802241. Despite no significant epistasis effect detected in PLINK, 
we observed that the presence of minor allele in rs4802241 to some extent mitigates the 
risk of developing AD introduced by the minor allele in rs2972559 (Fig.  4 (e)). Taken 
together, co-presence of minor alleles in rs4802241 and rs2972559 are likely associated 
with decreased CTCF binding in glioblastoma cells and reduced risk of AD, but their 
connections are yet to be further investigated.

Discussion
This study investigated the chromatin effect of sequences surrounding AD risk SNPs 
by leveraging deep genome annotation tools. Among the top predicted histone marks, 
the most significant log odds ratio changes were primarily observed in acetylation of 
histone H3, like H3K18ac and H3K23ac, all associated with GWAS SNP rs35396326 
(beta = 0.38, p = 1.35e-86 in GWAS). Acetylation levels of histones H3 and H4 have been 
previously reported to be lower overall in postmortem AD brains than in control brains. 
Among those, H3K18ac and H3K23ac were further validated as the most significantly 
hypoacetylated histone marks, along with H3K9ac, H3K27ac and H4K16ac [36]. In 
line with that, elevated levels of H3K14ac within the calpastatin promoter region was 
observed together with significantly decreased neuronal toxicity in neuroblastoma cells 
that underwent treatment to inhibit calcium-induced neuronal cell death [37]. While 
calcium-induced neuronal cell death is found strongly associated with the pathophysiol-
ogy of AD, this evidence together suggests a potential neuroprotective role of histone 
acetylation. Our results provide extra support for the hypothesis that the decrease in his-
tone acetylation is associated with the minor allele of the AD risk SNP rs35396326 with 
positive beta coefficient (β = 0.38, p = 1.35e − 86 in GWASs). In other words, our findings 
suggest that minor allele of rs35396326 is associated with greater risk of developing AD 
and greater likelihood of decreased histone acetylation.

Another group of chromatin features predicted to be strong associates with the top 
AD GWAS hits are DNases in normal human astrocytes and monocytes. The most sig-
nificant log odds ratio changes in DNase activity came from rs157585 and was specific to 
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monocytes, astrocytes and glioblastoma cells. In a DNase I footprinting analysis, muta-
tions inside two DNase hypersensitive sites within recombinant AP-2 were found asso-
ciated with the regulation of the APOE promoter region, thereby implicating their role 
in the pathogenesis of AD [38]. Specifically, multiple DNase-I hypersensitive sites were 
reported to be significantly associated with AD risk transcriptional factors in monocytes 
and macrophages [39]. The role of glial cells such as microglia, monocytes and astro-
cytes in neuroinflammation and AD have been widely studied, wherein the Aβ- activated 
glial cells produce cytokines and chemokines which in turn activate pathways leading 
to demyelination, oxidative stress and eventually cell death [40]. Although DNase I has 
been recently speculated to be a potential therapeutic intervention for AD, cell-type spe-
cific DNase I activity is overall under explored in AD [41, 42].

Another crucial finding of this investigation is that SNPs in the same LD block with 
extremely high correlation (≥ 0.9) were predicted to have a very distinct effect on chro-
matin functions, and 2) variants that are not significant but in the neighborhood of 
GWAS hits could still have an impact on the downstream function (rs75762623 in Fig. 2 
(b)). These results provided further proof that treating LD-block as redundant infor-
mation and having one variant to represent the entire LD block could possibly bias the 
functional annotation of GWAS findings and our interpretation of disease mechanism.

In addition, we also observed a significant genetic context effect on the predicted func-
tional effect of risk alleles. Among the top 100 AD GWAS SNPs, co-presence of minor 
alleles in two sets of neighboring SNPs were predicted with greater loss of function in 
CTCF binding activities in glioblastoma cells and DNase hypersensitivity sites in astro-
cytes. This provides evidence to support the importance of the genetic context surround-
ing GWAS hits, which should not be simply treated as redundant information. Similar 
findings have only been recently reported for other diseases such as Brugada syndrome 
[11]. While GWAS findings have been increasingly leveraged for many important down-
stream applications such as polygenic risk estimation and discovery of drug targets, cau-
tion should be exercised when utilizing the GWAS findings, especially considering the 
limited replicability of polygenic risk scores and failure of many clinical trials.

Conclusion
Taken together, our results suggest the need for reanalysis of published AD GWAS data 
and reconsideration of future application plans for GWAS findings. This work has sev-
eral limitations that merit further consideration. First, given that a long input sequence 
and large number of variants could lead to an exponentially high number of genotype 
combinations as genomic context, we constrained this project to the top 100 AD GWAS 
SNPs, which are mostly located around the APOE region and employed ExPecto with 
a 2000 bp input sequence. Due to the lack of genome sequence data for real patients, 
we performed a synthetic analysis of genetic context in which we examined all possi-
ble combinations of minor alleles across the SNPs within the 2000 bp window, some of 
which may not exist in population data. Applying this approach to genomic sequences 
obtained from actual patients could be especially beneficial, as it would capture a more 
precise genomic context in which AD-associated risk variants exert their effects. In addi-
tion, we restricted our investigation to cell lines and tissues related to the brain, given 
that Alzheimer’s disease primarily affects the brain. However, recent research indicates 
potentially important, yet unexplored, associations of AD with other organs. Therefore, 
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the functional effects of AD variants in these tis- sues also merit further investigation. 
Some of these limitations could be addressed with further haplotype estimation from 
phased genotypes in large cohorts such as the UK Biobank or ADNI. Finally, our analysis 
is constrained to the 2000 bp window around GWAS lead SNPs near the APOE region. 
With individual subject data containing actual allele combinations, we could enhance 
our approach by integrating fine-mapping methods with Mendelian randomization. This 
would allow us to refine genetic regions more precisely and explore the impact of genetic 
context in greater depth. Overall, this study provides a new perspective for interpreting 
GWAS findings and new evidence to support the non-redundancy hypothesis of neigh-
borhood variants surrounding GWAS hits. More in-depth work is needed to further 
investigate the functional effect of GWAS hits as clusters.

Appendix A Top AD GWAS SNPs
The top 100 AD GWAS SNPs included in this study are listed in Appendix A.csv.

Appendix B brain related chromatin features in ExPecto
Brain-related chromatin features related to brain were manually extracted from ExPecto, 
and are listed in Appendix B.csv.
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