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Abstract

Background: Late-onset Parkinson’s disease (LOPD) is a common neurodegenerative
disorder and lacks disease-modifying treatments, attracting major attentions as the
aggravating trend of aging population. There were numerous evidences supported
that accelerated aging was the primary risk factor for LOPD, thus pointed out that
the mechanisms of PD should be revealed thoroughly based on aging acceleration.
However, how PD was triggered by accelerated aging remained unclear and the
systematic prediction model was needed to study the mechanisms of PD.

Results: In this paper, an improved PD predictor was presented by comparing with
the normal aging process, and both aging and PD markers were identified herein
using machine learning methods. Based on the aging scores, the aging acceleration
network was constructed thereby, where the enrichment analysis shed light on key
characteristics of LOPD. As a result, dysregulated energy metabolisms, the cell
apoptosis, neuroinflammation and the ion imbalances were identified as crucial
factors linking accelerated aging and PD coordinately, along with dysfunctions in the
immune system.

Conclusions: In short, mechanisms between aging and LOPD were integrated by
our computational pipeline.
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Introduction
As the second most common neurodegenerative syndrome (only after Alzhei-

mer’s disease), Parkinson’s disease (PD, namely paralysis agitans), affects 1% of

the worldwide population over the age of 60 years [1]. It is characterized by the

motor (i.e. resting tremor, movement slowness, rigidity, and postural instability)

and nonmotor symptoms (i.e. hyposmia, sleep disorders, autonomic dysfunction,

neuropsychiatric alterations, and sensory symptoms) [1]. The motor and non-

motor disorders caused by dopamine deficiency severely affect the life quality of

the aging population. But up till now, there is not available curative and disease-
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modifying therapies for PD [2]. With the prevalence of PD increasing, it is emer-

ging as a socio-economic burden and a serious problem for the public health [2].

There were abundant epidemiological evidences supported that aging was the

primary risk factor for Late-onset Parkinson’s disease (LOPD) [3]. The preva-

lence of LOPD increased steadily with age [4], indicating aged brains were vul-

nerable to PD compared with young brains. Thus, the relationship between

LOPD and aging was inseparable. First, there were some similar behavior

changes between the healthy elderly people and the PD patients, such as slow-

ness of motion, postural instability and cognitive deficits [5]. Second, the age at

onset of PD significantly influenced the phenotype and progression of the dis-

ease [3]. In other words, age-related factors could predispose old individuals to

develop this common neurodegenerative disease. Impaired mitochondrial func-

tions [1, 5], the cell apoptosis [6, 7], and the chronic inflammatory process [8]

showed commonalities in both PD and normal aged people. Third, the loss of

substantia nigra (SN) neurons between normal aging and PD was significant,

where the loss of neurons was 28.3% in older controls compared with younger

controls, and the loss of pigmented neurons in PD was 73% compared with

older controls [9]. It is noteworthy that SN neurons were the most susceptible

to degeneration of PD [3]. Additionally, LOPD was often considered as a result

of aging acceleration [5]. Therefore, to obtain a comprehensive understanding

between aging and PD, we made a presumption that the onset of PD was in-

duced by accelerated aging through a series of mechanisms (i.e. dysfunctions in

the immune system, Fig. 1a).

Several studies have focused on the molecular mechanisms of PD development

and in connection with the aging process [10]. Nevertheless, it is still insufficient

to uncover the underlying relationship between PD and aging acceleration based

on systematic models, which were informative to study PD. Fortunately, it has

been demonstrated that machine learning techniques in correctly classifying

healthy and PD patients performed well [11], thus predictive models based on

genetic datasets were used to identify potential biomarkers, which was powerful

to trial design and evaluation, as well as diagnosis and treatment of PD [12]. Re-

cently, different approaches have been proposed for accurate characterization and

diagnosis of PD (i.e. the voice disorder, gait, age and so on) by statistical analyses

and machine learning methods [13, 14]. However, these results neither deeply re-

vealed the connection between aging and PD, nor indicated the mechanisms of

LOPD regulated by aging acceleration. Hence, systemic models were urgent to

understand the trigger mechanisms of PD during aging acceleration (Fig. 1a), still

needing to be improved by machine learning and network methods.

In the manuscript, to explore the disturbance of biological functions during the

aging process, a computational pipeline was developed on the basis of both nor-

mal and PD transcriptional profiles (Fig. 1b). (1) The improved PD predictor (by

comparing with normal aging) was contributed to identify risk biomarkers, as

well as the aging predictor, where the kNN algorithm was used to capture data

features from the complex non-linear characteristics of aging and neurodegenera-

tive diseases, respectively [15]. (2) The aging scores were further summarized

based on aging markers. (3) The aging accelerated network was constructed based
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on both correlation and partial correlation of each gene pair. (4) Both network

analysis and enrichment analysis were also conducted to identify potential mecha-

nisms of LOPD regulated by aging acceleration. In conclusion, our pipeline was

designed to investigate the connection between accelerated aging and LOPD at

system level.

Results
Modeling the aging predictor and identifying aging markers

The total gene expression profile including 13,883 genes (Text S1) from six

GSE profiles was analyzed. The details of the young samples and the old sam-

ples for the training dataset and test dataset were shown in Text S2. We uti-

lized Pearson correlation coefficient and k-Nearest Neighbors (kNN, k = 5 and

the cosine distance) to model the aging predictor and selected the optimal one

based on the 10-fold cross-validation. The learning curve of the training dataset

Fig. 1 a The mechanism hypothesis diagram of LOPD; b The workflow in our work
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was shown in Fig. 2a. As a result, the top 69 genes were identified as the aging

markers (Table S1). The accuracy in the test dataset was 0.8109. The receiver

operating characteristic (ROC) curve was shown in Fig. 2b, and the area under

the ROC curve (AUC) was 0.81322. Obviously, these related results indicated

the reliability of the optimal aging predictor.

It was noteworthy that the selected aging biomarkers were of great significance. For ex-

ample, RBMS1 was the most relevant gene (with the highest ranking) among the 69 aging

markers. As previously reported, RBMS1 encoded a cell cycle suppressor, which bound to an

enhancer element of MYC [16]. The transcription protein of RBMS1 was implicated in DNA

replication, transcription, and cell apoptosis [17]. As a result, these dysfunctional cell activities

might lead to the accumulation of cellular senescence and aging [18]. In short, RBMS1 was

closely related to the aging process.

Modeling the improved PD predictor and identifying PD markers

In order to better understand how LOPD was triggered in the context of aging acceler-

ation, an improved PD predictor was constructed by discriminating PD and normal

aged groups compared with the healthy young group. The details of the number of

aged normal and PD samples in both training and test dataset were listed in Text S2.

Fig. 2 The learning curve and ROC curve in the aging predictor and improved PD predictor. a The learning
curve of the aging predictor; b The ROC curve of the aging predictor; c The learning curve of the improved
predictor; d The ROC curve of the improved PD predictor
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The importance of 13,883 genes was ranked by the absolute values of Pearson correl-

ation coefficients, and the k-NN algorithm (k = 5 with the cosine distance) was used to

model the PD predictor. Then the optimal model as well as PD markers were selected

by the 10-fold cross-validation. The top 8 markers were considered as key PD markers

(Table S2). And the learning curve was shown in Fig. 2c. For the stability of the selected

model, it was validated in the total test dataset, the accuracy was 0.7039. The ROC

curve for the PD predictor was shown in Fig. 2d and the AUC value was close to 0.7.

To evaluate the accuracy of the improved PD predictor, we performed the same oper-

ation with the original gene profiles. The results showed that the prediction accuracy of

the total test dataset was 0.6882 (Table 1). The related curves and biomarkers were also

shown in Figure S1 and Table S3. In summary, compared with traditional PD predictor,

the improved PD predictor performed more effectively.

It was intriguing that ADD2 was identified as the top biomarker in the improved PD

predictor. ADD2 was abundant in erythrocytes and brain tissue [19], and its proteins

were associated with the assembly of spectrin-actin network and signal transduction

pathways by interacting with protein kinase C-dependent and calcium/calmodulin-

dependent pathways [20]. It has been reported that a delayed calcium efflux and mito-

chondrial Ca2+ overload may induce cell deaths and neuronal loss in neurodegenerative

disorders [21]. Accordingly, ADD2 probably contributed to the PD pathology and was

involved in the aging process by regulating the mitochondrial functions.

The aging acceleration pattern between PD and normal aged samples

To investigate the aging acceleration in LOPD, the aging scores were calculated by

regressing the transformated age (using the sigmoid function) based on the aging

markers. For distinct age groups, the median and mean of the chronological age and

aging scores were shown in Table 2. There were increasing trends of the aging scores

in both PD and normal aged samples, along with the chronological age. Apart from

this, the aging scores of PD samples were always higher than normal samples within

the same age group, although the median and mean of chronological age were lower.

The results indicated that LOPD samples presented aging acceleration compared with

normal aged samples. Therefore, when judging the level of aging, the chronological age

did not fully reflect the aging rate of the body, but the aging score seemed to be more

credible. In addition, the Kruskal-Wallis test was utilized to test the differences between

LOPD and control samples. The results in Fig. 3 indicated that aging scores increased

roughly with age, and almost all of the aging scores between PD and normal groups

were significantly different (p < 0.05), revealing the accelerated aging patterns in most

age groups of LOPD. Generally, the aging scores that used to evaluate the accelerated

aging patterns in LOPD were of feasibility.

Table 1 The accuracy of the training dataset and test dataset for the aging predictor, the
improved predictor as well as the traditional predictor

The accuracy for training dataset The accuracy for test dataset

The aging predictor 0.8291 0.8109

The improved PD predictor 0.7274 0.7039

The traditional PD predictor 0.7204 0.6882
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The aging acceleration network revealed potential biological functions

To integrate aging and LOPD markers, the aging acceleration networks were con-

structed in the training data and the test data based on the aging scores (as mentioned

in “Materials and Methods”), respectively. Further, the Fisher’s exact test was carried

out to calculate the similarity between these two networks, the result showed p-value

was very closed to 0. The result indicated that our method was of reliability.

Fig. 3 The Kruskal-Wallis test of aging scores for different age groups in the normal samples and PD
samples. a Age ≥ 50; b Age≥ 55; c Age ≥ 60; d Age ≥ 65; e Age≥ 70; f Age ≥ 75; g Age ≥ 80; h Age≥ 85
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To validate the scale-free characteristic, the curve of node degree distribution was

shown in Fig. 4, where the logarithmic transformation was performed in both degrees

and corresponding probabilities to test the power-law distribution. As a result, the

Pearson correlation coefficient was − 0.9154 (p ≈ 0). It illustrated that the aging acceler-

ation network was in accordance with the scale-free characteristic (there was a negative

correlation between the degree and the frequency, where only a small ratio of genes

were with high degrees).

Considering key functions of the nodes with maximum node degrees, the gene nodes

were ranked based on the degrees. SLC37A1 was with the maximum degree (=5465).

SLC37A1 is a Pi-linked glucose-6-phosphate (G6P) antiporter and probably catalyzes

both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges [22]. Furthermore, it

has been reported that SLC37A1 is related to transport glycerol-3-phosphate (G3P),

where the disturbance of ATP would affect these critical functions in brain [23]. In

short, SLC37A1 may play an important role between aging and PD through the mito-

chondrial function.

Table 2 The chronological age and aging scores of PD and control in different age groups

Age The
median
age in
PD

The
median
age in
control

The
mean
age in
PD

The mean
age in
control

The median
aging score
in PD

The median
aging score in
control

The mean
aging score
in PD

The mean
aging score
in control

≥50 69 71 68.82 71.21 0.584265 0.563570 0.582653 0.560505

≥55 70 72 70.39 72.65 0.591580 0.567050 0.585589 0.564299

≥60 72 76 72.43 77.02 0.598085 0.569840 0.588650 0.570399

≥65 75 79 74.79 79.84 0.604960 0.572590 0.594936 0.572388

≥70 76 82 77.20 82.30 0.617940 0.583710 0.606210 0.577525

≥75 78.5 85 79.90 85.26 0.626575 0.586700 0.614572 0.580568

≥80 84 87 83.68 88.02 0.622935 0.587725 0.610096 0.580391

≥85 87 90 86.77 90.57 0.617940 0.568660 0.603662 0.574285

Fig. 4 The degree distribution of the accelerated aging network. The Pearson correlation coefficient is −
0.9154 and p-value is close to 0
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Underlying PD mechanisms based on the enrichment analysis in the aging acceleration

network

To investigate the relationship between aging and LOPD, the Aging-PD shortest paths

were identified based on aging acceleration network. Then the enrichment analysis (i.e.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Biological Process

(BP) terms, shown in Table 3) was performed based on each shortest path, respectively.

The most significant KEGG pathway was the PPAR signaling pathway (p = 2.0267e-05,

FDR = 0.0038, Fig. 5a). Interestingly, it was also with the maximum number of enriched

paths (3 paths). There were three isotypes of PPAR: PPARα, PPARβ/δ and PPARγ, and

their functions were related to the immunotolerance, lipid/glucose metabolism, angio-

genesis and the inflammatory response [24]. PPARγ was critical to neuroprotective and

anti-inflammatory responses, thus reduced inflammation-driven neuronal damages

[25], cell deaths and the progression of neurodegeneration [26]. A current research

even has indicated that the PPAR signaling pathway was as the potential target of neu-

roprotection [27]. Moreover, other results also showed that PPARγ was a critical thera-

peutic target in Parkinson’s disease, by regulating fatty acid oxidation, immune

responses and the mitochondrial function [28]. In short, the PPAR signaling pathway

was vital to LOPD.

The immunological memory formation process (GO:0090715) was the most enriched

BP term (p = 8.7146e-07, FDR = 0.0051, Fig. 5b). Memory cells were widely associated

with aging. The percentage of memory T cells were with an increasing trend with age,

indicating the importance of memory cells during the aging process [29]. Besides, the

treatment of CD4+ T cells in PD patients has been drawn more attentions [29]. To

sum up, the functions of the immunological memory linking aging acceleration and PD

were confirmed thereby.

The alpha and beta T cell differentiation (GO:0046632) was the BP term enriched in

most shortest “aging-PD” paths (3 paths, Fig. 5c). There were a series of researches re-

ported that the mechanisms of PD were closed related to the acquired immune system

[30], where CD8+ T cells killed SN dopamine neurons through the MHC class I com-

plex [30]; and accumulative α-synuclein peptides (a risk PD factor) could be recognized

by T cells [31]. In brief, the T cells contributed to the loss of dopamine neurons.

Table 3 Enrichment analysis results with the most numerous enriched paths (the minimum p-
value and FDR)

Name P-value FDR

KEGG_PPAR_SIGNALING_PATHWAY
(3 paths)

6.06e-05 0.0113

2.03e-05 0.0038

6.0624e-05 0.0113

GO_ALPHA_BETA_T_CELL_DIFFERENTIATION
(3 paths, GO:0046632)

1.21e-04 0.0744

4.06e-05 0.0996

4.06e-05 0.0498

GO_POSITIVE_T_CELL_SELECTION
(2 paths, GO:0043368)

5.4793e-06 0.0395

5.4793e-06 0.0298

GO_T_CELL_SELECTION
(2 paths, GO: 0045058)

1.0741e-05 0.0395

1.0741e-05 0.0298
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The relationship between aging and PD were reflected by the aging-PD bipartite graphs

To study the relationships between the aging and PD markers, the coefficients were

calculated based on each “aging-PD” pair. Then the results of PD and control sam-

ples were compared (as mentioned in Materials and Methods). The pair with the

highest absolute differential correlation coefficient was GK2 and BCL11B. Evidences

reported that GK2 was related to the mitochondrial LC-fatty acid beta-oxidation,

where the efficient energy was produced. Energy metabolism was vital to life activ-

ities, and was dysregulated during accelerated aging thus in the context of neuro-

degenerative diseases [32, 33]. BCL11B was a fundamental transcriptional regulator

Fig. 5 The shortest paths for enrichment analysis of KEGG and BP. a The maximum number of enriched paths for
KEGG pathway (PPAR signaling pathway, p=6.0624e-05, FDR= 0.0113; p=2.0267e-05, FDR= 0.0038; p= 6.0624e-05,
FDR= 0.0113); b The most significant BP path (Immunological memory formation process, GO:0090715, p=8.7146e-
07, FDR= 0.0051); c The maximum number of enriched paths for BP pathway (Alpha-Beta T cell differentiation,
GO:0046632, p=1.2141e-04, FDR= 0.0744; p=4.0638e-05, FDR= 0.0996; p=4.0638e-05, FDR= 0.0498). The yellow
nodes represent the aging biomarkers, the blue nodes represent the genes connecting aging biomarkers and PD
biomarkers, the green nodes represent the PD biomarkers, and the genes in the red square frames coincide with
those genes in the enriched functions. “PPAR*”: the PPAR signaling pathway
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in cell apoptosis, proliferation, and differentiation [34], thus related to the variation

and development of neuronal subtypes of central nervous system [35]. Moreover, it

was essential for the development of the immune system [34] and was considered as an

interacting partner of T cells [36]. For example, the expression of cytokines (such as IL2,

IL5 and IL13) in various T cells was depended on BCL11B [35, 36]. Therefore, BCL11B

may be associated with aging and PD through the immune system.

The comprehending correlation mechanisms of aging and PD were further analyzed. As

a result, GJC1 was identified the aging marker linking most PD markers and BCL11B was

the PD marker linking to most aging markers (Figure S2). Strikingly, the importance of

BCL11B was further highlighted. In addition, it has been reported that GJC1 was related

to the ion channel activity. Therefore, the dysregulation of GJC1 during advanced aging

was associated with ion imbanlances and the neuronal apoptosis [37], where the oxidation

of ion channels was also a hallmark of cell deaths in PD progression [37]. In a word, the

index of ion imbanlances was a bridge linking aging and PD.

In addtion, a sub-network composed of all the “aging-PD” shortest paths were picked

out thereby, and these genes were ranked by their betweennesses (in descending order)

along with the permutation p-values (shown in Table 4). There were 4 out of the top 10

genes whose p-values were significant. For example, BCL6 was with the largest betwee-

ness 80 (the permutation p-value = 0), meaning that there were 80 shortest paths going

through this gene. Obviously, BCL6 is a critical marker in cell apoptosis. It has also been

reported that BCL6 contributed to the differentiation of follicular helper T cells and the

inflammation activation of macrophages [38]. Therefore, it could be speculated that BCL6

was one of the most important markers linking accelerated aging and LOPD.

Discussion
In this work, the relationship between aging and LOPD were studied through our com-

putational pipeline. First, the aging markers were identified by the aging predictor.

Thus, the improved PD predictor compared with the normal aging process was mod-

eled to identify PD markers. Besides, the aging scores showed the aging acceleration

pattern in LOPD compared with the control group. Further, the aging acceleration net-

work based on aging scores was constructed, where the aging-PD paths revealed critical

functions at system level.

Table 4 The top 10 genes with the top betweenness in the aging acceleration network

Gene Betweenness p-value

BCL6 80 0*

ARPC5L 69 0.076

APBB1IP 39 0*

ASNS 23 0.081

BTN2A1 20 0.014*

CFLAR 15 0.003*

ANK3 11 0.082

CD2AP 11 0.195

ABHD3 9 0.340

CASP2 9 0.354

*:p-value< 0.05, significant
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The top aging marker (RBMS1) played a vital role in cell apoptosis [17]; the most

notable PD risk biomarker (ADD2) revealed the importance of the mitochondrial Ca2+

imbanlance; and the most important network node SLC37A1 also indicated the

mitochondria-related mechanisms of PD through the energy metabolism. Four out of

top ten genes with the significant betweennesses suggested that the immune system

was vulnerable to be dysregulated during advanced aging [39]. More importantly, the en-

richment results highlighted the crucial core of the PPAR signaling pathway interacted with

the neuroinflammation, mitochondrial oxidative stress and cell apoptosis. The most closely re-

lated “aging-PD” pair was GK2 and BCL11B, indicating the critical role of GK2 that was re-

lated to ATP production in mitochondria. BCL11B was also as the PD biomarker linked most

aging biomarkers and associated to the immune response and eliminate inflammation. What’s

more, GJC1 (as the aging marker linked the most PD markers) acted as a key role in the ion

channel. In short, our results integrated aging and PD markers systematically (Fig. 6).

In the neuroimmune-endocrine theories of aging, the neuroinflammation response was ex-

aggerated and prolonged in the healthy aged brain, thus advanced aging tended to induce a

series of inflammatory factors amplified this response [40]. Our results further confirmed the

importance of inflammation in the progression of PD [41]. In addition, apart from the mech-

anism of neuroinflammation-induced PD [42], other mechanisms of LOPD were integrated

through our results. More interestingly, we proposed that the improved PD predictor was

more reliable in exploring how PD was induced by aging acceleration. The PD markers identi-

fied by our improved prediction model have confirmed the dysfunctions in the mitochondrial

Ca2+ pathway [43]. Further, the neurodegenerative disease was more vulnerable to be induced

by excessive apoptosis in neuronal cells [44], thus the network markers with significant high

betweenness also indicated the vital role of cell apoptosis, where the ion imbanlances also

played an important role in PD progression (i.e. the function of GJC1). Strikingly, the enrich-

ment results demonstrated that the PPAR signaling pathway played a central role in regulating

the inflammation response, energy metabolisms and the cell apoptosis. In summary, our re-

sults integrated the neuronal apoptosis, neuroinflammations, mitochondrial metabolisms, and

the ion imbanlances as comprehensive mechanisms of PD, where the PPAR signaling pathway

may play a central role on the basis of immune disorders (Fig. 6).

Fig. 6 The mechanisms of accelerated aging triggering PD. The red genes are PD biomarkers, the green
genes are aging biomarkers, the orange gene is the most important network node, and the blue genes are
the top significant network nodes with the top highest betweenness. The blue arrows represent the links
with PPAR signaling pathway, the black arrows represent the links with energy metabolism, the red arrows
represent the links with ion imbalance, the green arrows represent the links with cell apoptosis, and the
orange arrows represent the links with immune responses
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In brief, our results indicated that LOPD was induced by accelerated aging, along with

dysfunctions in the immune system [45]. In addition, the neuronal apoptosis, mitochon-

drial metabolic processes, the neuroinflammation and the ion imbanlances interacted with

each other to induce PD coordinately. It has also been reported the homeostasis of these

mechanisms would be disrupted during the brain aging, presenting the key risk factor for

neurodegeneration [46]. Therefore, our results brought insight into a comprehensive un-

derstanding of LOPD development triggered accelerated aging.

Conclusion
To conclude, the aging predictor and the improved PD predictor revealed potential risk

biomarkers by machine learning methods, respectively. Then the aging scores were cal-

culated to assess the aging process in both PD and control groups. The aging scores re-

vealed significant aging acceleration in PD. Further, the aging acceleration network was

constructed by comparing (partial) correlations of genes between LOPD and control

samples. Additionally, the Aging-PD bipartite graph was utilized to investigate the rela-

tionship between aging and LOPD. As a result, the enrichment analysis indicated the

critical mechanisms of LOPD during advanced aging. That is to say, during accelerated

aging, the cell apoptosis, mitochondrial disorders, the ion imbanlances and the in-

creased neuroinflammation combined to trigger PD coordinately, where the PPAR sig-

naling pathway probably played the most critical role in immune dysfunctions.

Materials and methods
Gene expression profiles and data preprocessing

The gene expression profiles were obtained in Gene Expression Omnibus (GEO) data-

base (https://www.ncbi.nlm.nih.gov/geo/), including GSE8397, GSE20295, GSE28894,

GSE57475, GSE99039, and GSE15745 (Text S2). All of the selected PD or normal sam-

ples were not only with accurate age information, but also with more than 10 sample

sizes. These samples were obtained from five different platforms: GPL96, GPL97,

GPL570, GPL6104, and GPL6947.

The steps of obtaining gene expression profiles were as follows:

(1) The probes of samples were converted to various gene symbols of platforms.

(2) Gene expression values with the same gene symbols were summarized.

(3) The total data matrix was integrated and the missing gene expression values were

filled with 0.

(4) The genes with zero expression values ≥30% were deleted.

(5) Patients with early-onset PD (age < 50) were removed.

Finally, we collected the expression datasets of 425 healthy young samples (285 in

training data and 140 in test data), 447 normal aged samples (300 + 147) and 392 PD

samples (265 + 127) including 13,883 gene features (Text S1-S2).

In addition, the profiles in each platform was further normalized, seperately:

(1) On account of the mean and the standard deviation of the normal samples, the z-

score normalization was performed for both normal old samples and PD samples.
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(2) The Singular Value Decomposition (SVD) method was performed to eliminate the

inter-sample variation based on the top three principal components of the normal

and PD samples, respectively.

(3) The z-score was then utilized to normalize all samples based on the mean and the

standard deviation of the normal old samples.

Modeling the aging predictor and identifying aging biomarkers

To model the reliable aging predictor, the normal samples were divided into training

dataset and test dataset in which the ratio of training dataset samples to test dataset

samples were close to 2:1. In addition, the number of young samples (< 50 years old)

was similar to the number of old samples (≥50 years old) in both the training dataset

and the test dataset. To evaluate the gene-age correlation, the Pearson correlation coef-

ficient between genes and age labels was calculated:

corrðgene;AgeGroupÞ ð1Þ

Then, 13,883 genes were sorted in descending order based on the absolute values of

the correlation coefficients. Based on sorted gene symbols, k-NN (k = 5 with cosine dis-

tance) was performed to construct the top 100 aging predictors. The optimal model

would be selected through the 10-fold cross-validation. To prove the predictability and

efficiency of the aging predictor, the selected model was validated in the test dataset.

Modeling the improved PD predictor and identifying PD biomarkers

To uncover the mechanism of LOPD in the aging acceleration process, normal young

samples were considered as the auxiliary outlier group, and the improved PD predictor

was modeled by comparing LOPD and normal aged samples (age ≥ 50). The deviations of

PD and normal aged samples relative to healthy young samples were calculated as follows:

(1) The first 3 principal components (row vectors) of healthy young samples (row

vectors were samples, column vectors were genes) were extracted;

(2) The original gene expression profiles of the normal aged and PD samples were

substituted based on the residuals by regressing these 3 principal components of

the healthy young samples, respectively.

Further, the new gene datasets from the normal aged and PD samples were divided

into training dataset and test dataset. Similarly, the ratio of the training samples and

the test samples was closed to 2:1, and the proportion of the normal old samples and

PD samples was approximate in the training data and test data, respectively. The PD

aging predictor was also constructed by sorting descending absolute values of Pearson

correlation coefficients and utilizing k-NN (k = 5 with the cosine distance) method. The

traditional PD predictor using original gene datasets was also calculated to compare

and evaluate the prediction ability of the improved LOPD model.

Calculating the aging scores

For all normal samples and PD samples, the quantitative aging scores were further

summarized based on chronological age using the aging markers identified by kNN.

The detailed pipeline was as follows:
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(1) The chronological age was transformed using the sigmoid function:

transformated age ¼ 1
1þ exp − age−50ð Þ=50ð Þ ð2Þ

(2) The transformated age was predicted based on the aging markers using the linear

regression:

transformated age ¼
X

bi�aging mar keri ð3Þ

where bi was the regression coefficient for each aging marker, respectively.

(3) The prediction of transformated age was used as the aging score;

(4) The Kruskal-Wallis test was used to compare the accerelated aging pattern be-

tween LOPD and the normal aged samples for different age groups.

The construction of the aging acceleration network

The aging acceleration network based on the aging scores was constructed to further

reveal the relationship between aging and PD. For the purpose of reliable network val-

idation, the aging accelerated networks were constructed on the basis of training data-

set and test dataset, respectively. First of all, for the respective 13,883 gene values of

normal old samples and PD samples, the Pearson correlation coefficient as well as the

partial correlation coefficient (based on the aging score) of any each pair of genes was

calculated, respectively. Further, the assessment criteria of statistical significance was

the Benjamini-Hochberg False Discovery Rates (FDR) < 0.05. Additionally, the absolute

difference of partial correlation coefficient between PD samples and normal aged sam-

ples was calculated, as well as the absolute difference of correlation coefficient. If both

of the absolute differences were greater than 0.5, the relationship between pairs of

genes was further retained. Finally, with Fisher’s exact test, the similarity of two aging

acceleration networks based on training dataset and test dataset would be tested. At

the same time, scale-free property of the aging acceleration network was validated.

The construction of the aging-PD bipartite graph

To better understand the detailed connections between aging biomarkers and PD bio-

markers, the Aging-PD bipartite graphs were constructed in the context of the aging

acceleration network, depending on the existed shortest paths (using the Dijkstra algo-

rithm) from each aging marker to PD marker. To find out each pair of notable aging

markers and PD markers, the absolute value of the difference between two correlation

coefficients in the normal aged group and PD group was calculated, and the “aging-PD”

pair with the opposite sign was further retained. Then the Aging-PD biomarker pair

with the maximum absolute value should be noted. Moreover, the aging biomarker that

most closely linked to PD markers and the PD biomarker that most closely linked to

aging biomarkers were important. Therefore, for each aging marker, the sum of abso-

lute values of PD markers was calculated. For each PD marker, the sum of absolute

values of aging markers was also calculated. As a result, the aging/PD marker with high

accumulated absolute differential correlations were the considered as critical genes
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interacted with PD/aging markers. As a result, totally 362 “aging-PD” pairs were identi-

fied out of 552 (69*8) pairs.

Further, the subnetwork with shortest pathways among selected “aging-PD” pairs

was constructed, and genes in the subnetwork were sorted by their betweennesses in de-

scending order. To test whether the top betweenness genes were hubs in the background

network or not, we ran a permutation to count the occurrence times of the top genes in

the shortest paths between random selected genes (containing the same numbers of

“aging-PD” pairs, 69*8) when they were with greater betweennesses than those in our

study. We repeated this process 1000 times, and the p-value was calculated as the propor-

tion of occurrence times of the top betweenness genes in 1000 permutations.

Enrichment analysis

To find vital biological functions, enrichment analysis was utilized. Gene Ontology

(GO) terms and KEGG pathways were downloaded from Gene Set Enrichment Analysis

(GSEA) platform (http://software.broadinstitute.org/gsea/downloads.jsp, version 7.0).

The hypergeometric test was used to performed to estimate the enrichment of KEGG

pathways or GO BP terms. The hypergeometric test formula was given as

P X ≥xð Þ ¼ 1−
Xx−1

k¼0

Ck
M�Cn−k

N−M

Ck
N

ð4Þ

where N is the total gene number of the gene sets, M shows the number of known

genes (i.e. KEGG pathway, GO terms), n is the number of identified genes in each

shortestpath, and k is the number of common genes between the known genes and the

identified candidate genes (in each aging-PD shortest path). The p-value of each path-

way was controlled by the Benjamini-Hochberg method. The final thresholds were p <

0.05 and FDR < 0.1.
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