Skip to main content

Table 3 Performance comparison with current state-of-the-art methods on dataset-a

From: MultiChem: predicting chemical properties using multi-view graph attention network

 

Dataset

 

Model

Classification (AUROC)

Regression (RMSE)

Data

 

BBBP

Tox21

ToxCast

SIDER

ClinTox

BACE

FreeSolv

ESOL

Lipo

 

MGCN

0.850

0.707

0.663

0.552

0.634

0.734

3.349

1.266

1.113

 

[39]

(0.064)

(0.016)

(0.009)

(0.018)

(0.042)

(0.030)

(0.097)

(0.147)

(0.041)

 

SchNet

0.847

0.767

0.679

0.545

0.717

0.750

3.215

1.045

0.909

 

[51]

(0.024)

(0.025)

(0.021)

(0.038)

(0.042)

(0.033)

(0.755)

(0.064)

(0.098)

 

Weave

0.837

0.741

0.678

0.543

0.823

0.791

2.398

1.158

0.813

 

[29]

(0.065)

(0.044)

(0.024)

(0.034)

(0.023)

(0.008)

(0.250)

(0.055)

(0.042)

 

GraphConv

0.877

0.772

0.650

0.593

0.845

0.854

2.900

1.068

0.712

 

[31]

(0.036)

(0.041)

(0.025)

(0.035)

(0.051)

(0.011)

(0.135)

(0.050)

(0.049)

 

HU.et.al

0.915

0.811

0.714

0.614

0.762

0.851

-

-

-

 

[22]

(0.040)

(0.015)

(0.019)

(0.006)

(0.058)

(0.027)

    

AttentiveFP

0.908

0.807

0.579

0.605

0.933

0.863

2.030

0.853

0.650

 

[62]

(0.050)

(0.020)

(0.001)

(0.060)

(0.020)

(0.015)

(0.420)

(0.060)

(0.030)

 

MPNN

0.913

0.808

0.691

0.595

0.879

0.815

2.185

1.167

0.672

[a]a

[19]

(0.041)

(0.024)

(0.013)

(0.030)

(0.054)

(0.044)

(0.952)

(0.430)

(0.051)

 

DMPNN

0.919

0.826

0.718

0.632

0.897

0.852

2.177

0.980

0.653

 

[63]

(0.030)

(0.023)

(0.011)

(0.023)

(0.040)

(0.053)

(0.914)

(0.258)

(0.046)

 

MPG

0.935

0.805

0.712

0.628

0.915

0.839

2.286

0.908

0.637

 

[35]

(0.012)

(0.015)

(0.010)

(0.020)

(0.023)

(0.052)

(0.389)

(0.105)

(0.044)

 

GROVER

0.940

0.831

0.737

0.658

0.944

0.894

1.544

0.831

0.560

 

[50]

(0.019)

(0.025)

(0.010)

(0.023)

(0.021)

(0.028)

(0.397)

(0.120)

(0.035)

 

KANO

0.939

0.808

0.723

0.626

0.938

0.852

1.938

0.840

0.596

 

[16]

(0.016)

(0.018)

(0.008)

(0.009)

(0.022)

(0.034)

(0.288)

(0.150)

(0.036)

 

Our model

0.956

0.822

0.749

0.626

0.921

0.849

1.940

0.746

0.597

 
 

(0.018)

(0.029)

(0.001)

(0.007)

(0.035)

(0.028)

(0.312)

(0.093)

(0.027)

 
  1. Average AUROC and RMSE scores used three random seed values
  2. The numbers in parenthesis are standard deviations of the results on three random seed values
  3. Bold means pretraining model
  4. The bold number and underlined number mean the highest and second-highest numbers
  5. a[a] is from [50]