Skip to main content

Table 5 Metrics average and standard deviation over 5 random test splits for the performance evaluation on LGG dataset

From: Supervised multiple kernel learning approaches for multi-omics data integration

 

LGG

Algorithm

ACC

AUC

F1

block PLSDA

\(0.651 \pm 0.024\)

\(0.713 \pm 0.034\)

\(0.677 \pm 0.029\)

block sPLSDA

\(0.637 \pm 0.030\)

\(0.771 \pm 0.039\)

\(0.692 \pm 0.027\)

SVM concat

\(\mathbf {0.723 \pm 0.030}\)

\(\mathbf {0.781 \pm 0.024}\)

\(\mathbf {0.741 \pm 0.032}\)

SVM naive

\(0.709 \pm 0.011\)

\(0.774 \pm 0.024\)

\(0.724 \pm 0.022\)

SimpleMKL-SVM

\(0.684 \pm 0.011\)

\(0.759 \pm 0.024\)

\(0.710 \pm 0.020\)

SEMKL-SVM

\(0.691 \pm 0.011\)

\(0.762 \pm 0.028\)

\(0.719 \pm 0.017\)

STATIS-UMKL + SVM

\(0.709 \pm 0.009\)

\(0.774 \pm 0.023\)

\(0.728 \pm 0.015\)

Deep MKL (weighted sum)

\(0.687\pm 0.011\)

\(0.765 \pm 0.025\)

\(0.684 \pm 0.031\)

Cross-Modal Deep MKL (weighted sum)

\(0.700 \pm 0.020\)

\(0.768 \pm 0.026\)

\(0.695 \pm 0.032\)

NN_VCDN

\(0.703 \pm 0.036\)

\(0.754 \pm 0.030\)

\(0.715 \pm 0.028\)

Dynamics

\(0.707 \pm 0.029\)

\(0.769 \pm 0.027\)

\(0.714 \pm 0.023\)

MOGONET

\(0.669 \pm 0.026\)

\(0.711 \pm 0.026\)

\(0.69 \pm 0.032\)